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ABSTRACT

A one-dimensional analytical model for axial deformation of continuous fiber

reinforced metal-matrix composites under both thermal cycling and isothermal creep, with

or without externally applied stresses, has been developed. Fibers in the model are

considered to be non-creeping, thermo-elastic solids, whereas the matrix is considered to

be thermo-elasto-plastic and creeping. The model accounts for the strain history of the

composite, and allows for changing matrix creep mechanisms via the use of unified creep

laws. The use of unified creep laws allows separation of the overall instantaneous creep

strain rate into dislocation creep and diffusional creep components, which can be further

separated into power law breakdown, pipe diffusion controlled power law, volume

diffusion controlled power law, Coble and Nabarro-Herring creep. Additionally, the

model allows for the incorporation of time-dependent interfacial sliding near the

extremities of the fiber due to the existence of interfacial shear stresses. Based on a

recent study, interfacial creep has been represented as being controlled by difflisional flow

with a threshold stress (Bingham flow). The interfacial creep law allows simulation of

non-isostrain deformation across the interface, and thus the model is capable of explaining

experimental observations of strain incompatibility across the interface near fiber-ends. It

is envisioned that such a model will be useful in discerning the predominant matrix creep

mechanism at a variety of time periods for a given applied stress and temperature, and thus

make it possible for the generation of transient deformation mechanism maps for

composites.
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I. INTRODUCTION

The evolution ofmany composite materials is a relatively recent technology

compared to metals, polymers and ceramics [Ref. 1]. Fiber composites are hybrid

materials in which the internal architecture and composition are varied to produce a

"designer material", which is suitable for a specific structural or non-structural application.

Some of the advantages of composites over monolithic materials include: (1) increased

stiffness, (2) increased strength, (3) lower density, (4) increased fracture toughness, (5)

potentially higher fracture toughness, (6) higher temperature capabilities, including greater

creep resistance, and (7) tailorable thermal properties, i.e. coefficient of thermal resistance

(CTE) and thermal conductivity. In particular, continuously reinforced composites offer

substantial improvements in properties over monolithic material for loading along the fiber

axis, albeit at the expense of isotropy.

Composites are generally classified into three categories, polymer-matrix

composites (PMC), ceramic-matrix composites (CMC), and metal-matrix composites

(MMC) [Ref. 2]. PMCs are fairly common, inexpensive, have relatively low strength, and

are used in the lower range of the temperature scale (typically less than 500 K, although

some PMCs may be used up to 600 K). The fiber reinforcement in PMCs imparts

stiffness and strength. Metal-matrix composites (including intermetallic-matrix

composites) offer significantly higher temperature capabilities (800 to 1300 K).

Because ofthe attractiveness of the properties ofMMCs over non-reinforced

metals, MMCs have found several uses in the aerospace and automotive industries over



the last decade. For instance, the Toyota Motor Company has used metal-matrix

composites in diesel engine pistons [Ref. 3], Honda has developed and tested entire

Aluminum based MMC engine blocks [Ref. 4], Pratt and Whitney have recently started

utilizing aluminum based MMCs for aircraft engine applications, whereas the United

States Air Force are using discontinuously reinforced Aluminum composites for various

material substitution applications in aging aircraft. Other areas like electronic packaging,

where the tailorable coefficient of thermal expansion and thermal conductivity ofMMCs

offer substantial advantages, have also seen significant growth ofMMC applications, e.g.,

in module frames and card cages.

Many of the applications ofMMCs are exposed to high homologous temperatures

(T/Tm), either under monotonic or cyclic thermal loading conditions, necessitating the

development of detailed fundamental scientific understanding and predictive capabilities to

describe the time dependent deformation behavior of the composite as a whole. Typically,

reinforcement with fibers enhances the longitudinal creep resistance substantially, whereas

transverse creep resistance is relatively unaffected. With all the possible reinforcement

geometries, the introduction of ceramic or refractory metal long based fibers offers the

most significant improvement in creep characteristics.

Because of this, an understanding of the elevated temperature deformation is

crucial to the effective engineering design and development of continuous fiber metal-

matrix composites (CFCs) components for engineering applications. Several studies of

thermal cycling and creep ofMMCs have been reported [Refs. 5-22]. A majority of

models of creep/thermal cycling of composites assume that only one matrix deformation



mechanism to be operative throughout the creep life of the composite. Further, no model

is available that explicitly accounts for the time dependent relaxation mechanisms at the

interface. These can result in significant errors in the prediction of the overall composite

strain response during creep or thermal cycling.

This thesis proposes an analytical model for longitudinal creep/thermal cycling of

continuous fiber reinforced MMCs, incorporating: (1) a unified matrix creep law which is

capable of handling changing creep mechanisms as a function of the changing stress state

in the matrix, (2) contribution of internal thermal residual stresses to matrix creep, and (3)

time-dependent interfacial deformation during creep/thermal cycling prior to fiber

breakage. It is envisioned that, in addition to yielding predictive capability and a

mechanistic understanding of longitudinal creep of continuous fiber reinforced composites,

this model will facilitate the generation of transient deformation maps [Ref 23] for

continuous fiber reinforced composites in the future.





II. BACKGROUND

A. CREEP

Early creep experiments conducted by (1) Jech and Weber [Ref. 24] on titanium

and titanium alloys with continuous and discontinuous molybdenum fibers, (2) Dean [Ref.

25] on various nickel based alloys reinforced by continuos 0.25 mm diameter fibers, and

(3) Ellison and Harris [Ref. 26] carried out on Inconel 600 with 27 percent volume of

continuous and discontinuous tungsten fibers have all demonstrated an increase in the

stress rupture life of the composite relative to the appropriate unreinforced matrix alloy.

Since the aforementioned composite systems showed some mutual solubility between the

fiber and the matrix, the demonstrated increase in the stress rupture life of the composite

may have been influenced by the chemical changes in the composite. Creep in silver-

tungsten composites containing discontinuous fibers with little or no mutual solubility

were investigated by Kelly and Tyson [Ref. 5] also showed similar results. Their

investigation indicated that the incorporation of discontinuous fibers greatly reduced the

rate of creep ofthe matrix. In addition, they mention that the rate of creep appears to be

governed by the rate of creep in shear at the fiber-matrix interface, which is subject to a

high shear stress. De Silva [Ref. 6] did not agree with the mechanism proposed by Kelly

and Tyson [Ref. 5], which ignored the matrix tensile stress for both load and creep

considerations. The matrix tensile stress cannot be ignored since even small tensile

stresses in the matrix produce creep rates comparable to that of the composite. Secondly,

the shear-based mechanism did not explain creep in continuous fiber reinforced

composites (CFCs). De Silva explained that composite creep is governed by (1) the



progressively decreasing matrix shear stress adjacent to the interface in discontinuously

reinforced composites, and (2) progressively decreasing matrix normal stress resulting

from continued load transfer from the matrix to the fiber in a continuously reinforced

composite. Doruk and Yue [Ref. 7] suggested that a closed form equation can be

extracted from De Silva's [Ref 6] studies for the time-dependent increase in creep strain

using three assumptions for the formulation of the model: (1) load transfer from matrix to

the fiber occurs due to tensile stress relaxation in the matrix until the stresses in the matrix

and the fibers reach their steady state values; (2) the distribution of the composite stress

between the matrix and the fiber at any instant of the loading is governed by the rule of

mixtures,

CJ c
= Gf

V
f +OmVm

(where crand Fare the stress and volume fraction, and the subscripts c,f, and m refer to

the composite, fiber and matrix respectively) and, (3) the condition of isostrain elongations

is valid during creep. Doruk and Yue's [Ref. 7] for matrix strain (Asm = Aam/E) takes the

following form:

Act
fc).[i+05-i)«p(-^.)./)]^

N

where t = ^ At and (e
s)m

is a known function of ct„„ and where /? is the ratio of the
i

initial creep rate, s
i
to the steady state creep rate, e

s
. This theoretical model of the

primary creep in a fiber reinforced MMC assumes complete load transfer across the fiber-

matrix interface. The creep strain-time relationship in terms of the creep properties of the



matrix and the fiber can then be computed. This theoretical model like many others that

follow assume isostrain conditions across the fiber-matrix interface, and give reasonable

agreement with experimental results.

It is believed that during creep, the matrix undergoes stress relaxation by

transferring stress to the fiber [Refs. 6-11]. During a constant stress creep test, one of

following may occur: (1) if the applied stress is low, all the of applied stress is eventually

supported by the fiber (typically stronger and stiffer than the matrix) following complete

matrix stress relaxation, and the composite creep rate becomes zero, or (2) if the applied

stress is sufficiently high, following complete stress transfer to the fiber, the fracture

strength of the fiber may be reached, causing the fiber to rupture. The stress that

distinguishes situation (1) from (2) has been referred to as a threshold stress [Refs. 8,9],

below which no permanent microstructual damage occurs. McLean [Ref 8] showed that

below this threshold stress, a composite deforms predominantly by primary creep and

above this threshold stress, the composite deforms by primary, a brief secondary, and

tertiary creep. The tertiary stage is usually associated with permanent microstructual

damage, e.g., fiber fracture [Refs. 8,9]. McLean further concluded that the indirect

strengthening by particles or fibers can arise not only by the introduction of a threshold

stress for deformation but by altering the deformation kinetics as in the case of nickel-

based superalloys, and can be influenced by the dislocation structure.

Matsuura et al. [Ref. 9] carried out creep tests on aluminum composite reinforced

with continuous alumina fibers at temperatures of 573 to 773 K to examine the mechanism

of high temperature deformation and fracture of the composite in low and high stress



ranges (i.e., below and above the threshold stress respectively). These specimens were

allowed to creep for a period of time, were subsequently unloaded while still at the creep

temperature. It was observed that following unloading, the composite underwent time-

dependent strain recovery, with the total composite strain finally settling down to either a

finite value, corresponding to the permanent microstructual strain/damage, or to a zero

value, suggesting no permanent damage. It was further observed that when the post-

recovery strain was non-zero, there was evidence of fiber fracture, unless when the post-

recovery strain settled at a zero value, no fiber fracture occurred. It was thus concluded

that the threshold stress corresponded to the critical stress reached to initiate fiber

fracture, and therefore above this threshold, the composite creep rate would not go to

zero. In addition to fiber fracture, it is possible that permanent microstructural damage

may also occur by relaxation of interfacial shear stresses by time-dependent interfacial

sliding, although no direct evidence of this is available to date.

Bullock et al. [Ref. 10] assumed isostrain conditions across the composite in

investigations of creep in Ni-Ni3Al-Cr3C2 composites at 825°C and 980°C as a function of

microstructure and fiber aspect ratio, and utilized a separate interfacial boundary layer in

their model. By assigning a unique stress dependence (i.e., a
b
= <j

s
of the power-

law, where ob is the mean stress of the boundary layer, s is the strain rate, anda , e
,

and b are constants) to the interfacial boundary layer, they were able to account for the

interface deformation. The same power-law relationship is used describe the stress in the



matrix and the stress in the fiber (a =<j

f ^
s

m O.

\
£
°»J

and o f -<jn

r V
s

K
s
°tJ

respectively,

where am, Gf are the stresses carried by the fiber and matrix respectively and a , a ,

s
0m , s

0/
,m and/are constants). With these relationships and the rule of mixture for this

model (Vf+ Vm + Vb = 1, where V is the volume fraction and the subscripts/ m, and b

refer to the fiber, matrix and boundary respectively), they investigated two cases, (1)

where the stress exponents/= m = b, and (2) where the stress exponents are not equal, /

*m*b. However, of these models the analytical results were compared with only a

limited amount of experimental results, since at the time, few experimental studies were

available.

Goto and McLean [Ref. 1 1 ] also assume isostrain conditions across the fiber-

matrix interface, and considered a model consisting of a power-law creeping matrix,

reinforced by elastically deforming fibers, and that included the effect of an interfacial

region with different deformation characteristics from those of the fiber and the matrix.

The basic assumption in this model is that the fiber-matrix interface region constitutes a

separate phase of thickness, S, which is small compared to the fiber radius. This model

addressed two types of interfaces where; (1) fiber-matrix slippage since the thin layer

surrounding the fiber is less capable of supporting a shear stress relative to the matrix

(equivalent to the case where creep strength of the boundary zone is much less than that of

the matrix, i.e., s
i
» sm for the same applied stress), and (2) matrix strengthening, occurs

since the boundary zone creep strength is greater than that of the matrix, (i.e., e, « sm ),



resulting in local work hardening. In the fiber-slippage model, they assume the case of

totally incoherent fiber matrix interfaces the Orowan loops may collapse completely into

the boundary and provide a potent mechanism for the transfer of stress between the fiber

and the matrix. They add, that the absorption of the dislocation loops into the boundary

contributes to boundary slippage. In the case of the work hardened model, they assume

an Em and Ef dependency (Young's Modulus for the matrix and fiber). When Em > Ef,

and the dislocations are attracted to the boundary where they will introduce an element of

slippage while retaining the overall coherency. They correspond to the ideal strength of

the composite. When Em < Ef, the Orowan loops are repelled and stand off at an

equilibrium distance from the boundary, where a work hardened zone is zone is created

and is unlikely to contribute to boundary slippage.

Dlouhy, Eggeler and Merk [Refs. 12-13] recently studied and modeled the uniaxial

creep behavior of short fiber reinforced aluminum alloys. The particular mechanical

features that their model explained are: (1) the sharp decrease in the creep rate during the

primary stage, (2) the extended secondary creep stage with creep strain modulated by fine

oscillations, and (3) the slow increase in strain rate during tertiary creep. They concluded

that three elementary processes control creep of short fiber reinforced MMCs: (1) loading

of fibers by dislocations, (2) recovery processes in the work hardened zones around the

fibers, and (3) multiple breakage of fibers during creep. Their most important result of

the study is that primary and tertiary processes are not independent, i.e., stress transfer

from the matrix to the fiber is generally thought of as the dominant mechanism during

10



primary creep; however, stresses can be redirected from the fiber back to the matrix when

fiber breakage occurs.

Most of the studies [Refs. 7-13] have evolved different forms of the power-law

creep equations to represent matrix creep reported in the literature. Doruk and Yue [Ref.

7] used the power creep law for steady-state creep rate:

£
s
= Aa"exp(-AH

c
/RT)

(where A is a material constant, a is the stress, n is the stress component, AHC is the

creep activation energy, R is the gas constant, and T is the absolute temperature), and

attributed the Al/AlsNi matrix composite to undergo dislocation climb primary creep

around 0.5Tm assuming a complete load transfer across the fiber-matrix interface.

McLean et al. [Refs. 8, 10] also considered that the matrix obeyed the steady state power

law represented by s- Aa exp(-0/ RT) , or a modified form:

s=A'(a-aoy'exp(-Q'/RT)

where o is the threshold or friction stress associated with the reinforcement particles that

resist deformation. Bullock, McLean and Miles [Ref. 11] also uses a power-law creep

relation (described earlier) for both fiber and matrix:

u f -(j.

f . V
£

cr„ =<J„

f \
s

V °s J \
£
°~J

for yNi-Ni3Al(y')-Cr3C2 composites under a wide range of shear consideration. Most of

the reported literature assumes that only one matrix creep mechanism predominates during

the entire creep life of a composite.
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However, the creep mechanism is not only a function of temperature, but also a

function of stress. As discussed previously, the matrix is in a state of continuous stress

revision. Therefor, different deformation mechanisms may dominate at different times

during a creep test, even at a constant temperature. This is illustrated in Figure 1, which

represents a deformation mechanism map [Refs. 23, 27] for pure aluminum with a grain

size of 10.0 u,m. Assuming that the normalized matrix stress, (J„/m (where /j, is the

shear modulus) is initially in the plastic region in the vicinity of 10'2 crjju, at a

homologous temperature, 0.7, the matrix stress is seen to transverse through the Power

Breakdown region Law region, the Power Law into the Diffusional Flow.

TEMPERATURE^)
sot too

(LATTICE
DIFFUSION)

0.2 CU 0.6 08
HOMOLOGOUS TEMPERATURE, T/L

1.0

Figure 1. Pure aluminum of grain size 10 urn.
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Therefore, in the illustrated example, representing the matrix creep rate by just a power

law relationship is not realistic throughout the creep life of the composite. Power law

creep represents only a small stress-temperature range for composites as demonstrated

above.

Thus, it seems apparent that any composite creep model that is confined to one or

two of the matrix creep mechanisms depicted in the deformation mechanisms maps is

unlikely to describe the complete creep response over a wide range of applied stresses and

temperatures. This necessitates the consideration of a unified matrix creep law for use in

composite creep models. Further, the majority of the models represented in the literature

[Refs. 7-15], assume that the interface is rigid, i.e., isostrain conditions prevail between

the fiber and the matrix.

Significant experimental evidence now exists suggesting that the rigid interface

condition between the fiber and the matrix is not always maintained during creep and/or

thermal cycling [Refs. 9, 16, 28-35]. Matsuura et al. [Ref. 9] conducted creep test on

continuous alumina fiber reinforced aluminum composite. In the case for low stress levels

without excessive fiber breakage, and following the primary stage creep, it was determined

that the specimens were actually undergoing a measurable finite creep rate on the order of

10*9 to 10' 10
s"

1

. Weber et al. [Ref 33] set up experiments to determine the effects of fiber

and interface variables on the longitudinal creep ofy-TiAl reinforced with continuous

alumina fibers for both weak and strong interfaces at 982°C. A transient creep response

was noted in both cases (weak and strong interfaces). Schwenker and Eylon [Ref. 34]

conducted similar tests for Ti-6A1-4V composite reinforced with SCS-6 SiC continuous

13



fibers at low stresses at temperatures of 450, 538 and 650°C. At the two lower

temperatures, 450 and 538°C, the predicted creep response was noted; however, at the

same low stresses but at a higher temperature of 650°C , a measurable steady state creep

rate was observed. Acoustical readings taken during the testing at 650°C at low stresses

revealed negligible fiber breakage. At low stress levels, in the absence of fiber fracture,

any measurable time-dependent deformation in a continuous reinforced fiber composite

may be fully explained by the effect of interfacial creep.

Several other studies involving both creep and thermal cycling have all indicated

characteristics best explained by interface creep mechanisms [Refs. 16, 28, 30-32, 35].

Thermal cycling experiments conducted by Dutta et al. [Ref. 16] and Yoda et al. [Ref. 28]

demonstrate that the isostrain condition between the fiber and the matrix is not always

maintained. Uniaxial longitudinal tensile creep test conducted on continuous reinforced

fiber MMCs have been observed to have the matrix extrude beyond the fiber extremities in

the absence of fiber breakage. This clearly suggests the breakdown of the isostrain

condition, at least near the region of high shear stresses at the fiber ends.

Other studies [Refs. 30-32] also suggest the existence of some form of time-

dependent interfacial sliding mechanism. Rosier et al. [Ref. 30] analyzed the effect of

diffusional relaxation on creep strength in composite materials, and developed a

constitutive equation for the overall creep rate that was dependent on the rate of

diffusional flow along the interface. From this creep law, a critical aspect ratio below

which creep strength is lost and a critical transition temperature above which creep

strength is maintained is eliminated by rapid interface diffusion. According to the model

14



proposed by Kim and McMeeking [Ref. 31] the composite creep strength is equivalently

impaired by two independent and separate interface mechanisms: (1) interface with

minimal viscous drag (Newtonian viscous slip driven by interfacial shear stress) and (2)

rapid diffusion along the interface (diffusional creep driven by the radial stress acting along

the interface). Using a similar approach to model the interface deformation with unit cell

analysis and a finite element model (FEM), Nimmagadda and Sofronis [Ref. 32] reached

similar conclusions but take exception with Kim and McMeeking in the magnitude of the

effects of slip and diffusion which underestimates the creep strength of the composite.

These two mechanisms, slip and diffusion have the same stress dependence and the same

direction of flow; and as such, it may be reasonable to assume that there may be one single

interface creep law that combines the effects of both normal and shear stresses at the

interface.

Experiments conducted by Funn [Ref 36] used two models of single fiber

composite (SFC) systems in isolation from matrix creep mechanisms. The two systems

were chosen such that one had limited mutual solubility between the fiber and the matrix

and the other had none in a fiber push-out apparatus to measure the creep characteristics

of the interface. The interface was shown to display Bingham flow (diffusional flow with

a threshold stress), for both model systems with the range of stresses sustainable by the

interface without fiber fracture. An accompanying analytical yielded an explicit

constitutive law which describes the stress, temperature, and the matrix and interface

property dependence of interfacial creep, and indicated that the experimentally observed

15



threshold stress is directly attributable to the radial residual stress acting on the fiber

matrix interface.

The form of the proposed analytical interfacial creep law is:

where:

3

r„ = 2| — I
cr D , is the threshold shear stress,

Si - thickness of the grain boundary Qt
- atomic volume of the interface,

Ti - average applied interfacial shear stress Qi - activation energy for the rate

k - Boltzman constant controlling process

R - universal gas constant T - absolute temperature

h - peak to peak height of interface X - period of the interface

In the present work, this interfacial sliding law is incorporated in the composite

creep model, in order to allow for non-isostrain deformation of the fiber and the matrix.

Thermal cycling experiments conducted on continuous fiber reinforced composites

offer the most dramatic evidence of an independent interface deformation mechanism and

is discussed in detail in the next section.
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B. THERMAL CYCLING

The differences in the coefficient of thermal expansion (CTE) between the matrix

and the fiber can induce large internal stresses in the composite during thermal cycling,

which can result in the number of unusual effects in the strain response during cycling

[Refs. 16-18, 28-32, 37-40]. These effects include: (1) large strain hysteresis, (2) residual

plastic strain following one or more thermal cycles, and (3) a highly non-linear thermal

expansion coefficient. These effects have been attributed to: (1) differences in the

longitudinal coefficients of thermal expansion between the fiber and the matrix, (2) heating

and cooling rates, (3) strain history, and (4) creep deformation.

A number of these thermal cycling experiments conducted on continuous fiber

reinforced metal-matrix composites offer the most dramatic evidence of an independent

interface deformation mechanism [Refs. 16, 28-32]. These composites usually display a

large strain hysteresis during thermal excursions. A permanent residual strain may also be

observed after the first few thermal cycles. The strain hysteresis usually persists with

continued cycling; however, additional residual strains may not necessarily occur.

Examples of the strain hysteresis curves are found in (1) Garmong's [Ref 18] study of Al-

Al3Ni eutectic metal-matrix composite cycled between 300 and 850 K, (2) Dries et al.

[Ref. 40] rapid thermal cycling of PI 00 graphite-6061 Al metal-matrix composite cycled

between 1 16 and 394 K, and (3) Mitra et al. [Ref. 17] slow thermal cycling between 298

and 813 K of the same metal-matrix composite as Dries et al. [Ref. 40] studied. In the

above cases, three observations were made, (1) the strain hyteresis was attributed to the

varying matrix stress state of the composite, (2) plastic deformation of the matrix at the

17



lower temperature of the cooling leg contributes to the residual strain, and (3) creep

strains at the high temperature end of the thermal cycle. Characteristic curves of strain

versus temperature during a thermal cycle may indicate a "knee". The "knee" during the

heating leg of the thermal cycle is due to the compressive creep strains induced in the

matrix; whereas, during the cooling leg, it is due to the tensile yielding of the matrix.

Dutta et al. [Ref. 16] studied the effects of thermal residual stresses on the strain

response of graphite-aluminum continuous fiber composites during thermal cycling which

revealed time-dependent strains evident that the matrix has crept out pass the fiber ends to

relieve the thermally imposed tensile stress. It was also noted during the experiments,

that stress relaxation via matrix creep can give rise to time-dependent strains under

isothermal conditions with an external applied stress. After hundreds of cycles in the

homologous temperature range between 0.35 and 0.80 of tungsten wire reinforced copper

composites by Yoda et al. [Ref. 28], they observed the growth per unit length increased

after a given number of cycles with increasing holding time at the upper cycling

temperature; and that it was also dependent on fiber length, fiber diameter and fiber

volume fraction. Scanning electron micrographs of the 10 volume percent tungsten wire

reinforced copper composite in Reference 28 showed the copper matrix extruding pass the

ends of the tungsten fibers of 100 urn diameter by as much as 1.0 mm for samples that

were initially 10.0 mm long. This observation suggests that interface sliding plays an

important role in elevated temperature deformation in this class of material.

A number of analytical representations [Refs. 37-39] modeled the longitudinal

strain response of the unidirectionally reinforced composite during thermal cycling.
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However, most are based on an one-dimensional isostrain model where the fiber-matrix

interface is assumed perfectly bonded, (2) the fiber undergoes thermo-elastic deformation,

and (3) the matrix is subject to thermal, elastic, plastic and time dependent strains.

Garmong [Ref. 37]makes similar assumptions and assumes that, (1) Poisson effects are

dismissed, (2) stresses and strains are uniform within each phase, (3) no interfacial sliding

may occur, and (4) the composite is metallurgical^ stable, i.e., no physical or chemical

changes occur in the composite structure during thermal cycling or at exposure elevated

temperatures. This was a first step in analyzing composite behavior in conditions of

thermal cycling with applied loads helped provided a framework which the various

material and test parameters for observations of deformation and failure. Because of

these assumptions, the thermal cycling strain response shows a strong dependence on the

heating and cooling rate (i.e., slower cooling rates result in greater permanent strains.

Another factor is the coefficient of thermal expansion (CTE). The coefficient of thermal

expansion modulates non-linearly with temperature due to the varying stress and strain

states within the composites during thermal cycling.

Dutta et al. [Ref. 16] used the same assumptions to model the behavior of the

strain response of 20 volume percent PI 00 graphite-6061 Al metal-matrix composite

between 300 and 800 K at 1/60 Ks"
1

during thermal cycling. The results from their

analytical work on thermal cycling predicted that, (1) significant creep strains are induced

during both legs of the thermal cycle, (2) significant plastic strains are induced in the

matrix during cooling, and (3) creep strains result in a strong heating/cooling rate

dependence of the strain response.
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It is not only matrix plastic and creep deformation that may cause progressive

degradation of the mechanical properties of the composite [Ref. 17], but damage to the

fiber-matrix interface as well. Like the matrix plastic and creep strains, the extent of the

interfacial damage depends on the mechanical properties of the fiber and matrix,

coefficients of thermal expansion, the heating/cooling rates, as well as the nature of the

interface itself. Interfacial damage may occur via interfacial sliding, where the matrix may

extrude past the fiber ends or the fiber may extrude pass the matrix. Evidence of

interfacial sliding after thermal cycling is found in micrographs of graphite fiber ends

extruding pass the aluminum matrix in Reference 17 (slow heating and cooling), and

tungsten extruded with respect to the copper matrix in Reference 28 (rapid heating and

cooling).

Thus the importance of the fiber-matrix interface, where it may slide, cannot be

discounted nor neglected. This necessitates incorporation of interfacial sliding in any

phenomenologically correct model of creep and/or thermal cycling.
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III. OBJECTIVE

The purpose of this work is to develop a unidirectional model capable of

simulating the overall axial strain response of a continuous fiber reinforced metal-matrix

composite during both isothermal and thermal cycling conditions, with or without an

externally applied stress.

The model incorporates the effects of: (1) thermal history of the composite, and

the influence of internal residual stress, (2) evolving matrix deformation mechanisms (due

to continuous matrix stress state revision) via the use of unified creep laws, and (3) the

breakdown of isostrain conditions at the fiber-matrix interface. The model assumes that

the fiber is thermo-elastic, the matrix is thermo-elastic-plastic-creeping (with the creep rate

being represented by Garofalo's unified dislocation creep law [Ref. 41], and Frost and

Ashby's unified diffusion creep law [Ref. 23]), and that the interface may undergo time-

dependent diffiisional sliding following a Bigham type law, as proposed in Reference 40.

In the subsequent sections, the following longitudinal creep/thermal cycling models

for continuous fiber reinforced composites are presented, (1) with isostrain conditions

across the fiber-matrix interface (Section A, Chapter IV), the Isostrain Model, and (2) the

model with interfacial sliding (Section B, Chapter IV), the Non-isostrain Model.

21



22



IV. ANALYTICAL MODELS

A. ISOSTRAIN CONDITION ACROSS THE INTERFACE,
UNIFIED MATRIX CREEP LAW

The following analysis of composite creep is based on a model by Garmong [Ref.

37] as modified by Tyson [Ref. 38]. The model by Garmong and Tyson [Refs. 37, 38]

assume that, (1) the composite deformation is one-dimensional, (2) the stresses and strains

are uniform within each phase, (3) there is no interface sliding, (4) no chemical or physical

changes in the structure (metallurgically stable), (5) the temperature is uniform throughout

the composite, (6) fiber is thermo-elastic, and the matrix is thermo-elastic, plastic and

creeping and follows the power-law for creep. In the following analysis, Garofalo's

unified dislocation creep law [Ref. 41] and Ashby and Frost unified diffusion creep law

[Ref. 23] are utilized in order to demonstrate High Temperature Power Law Creep (lattice

diffusion controlled creep), Low Temperature Power Law Creep (pipe diffusion controlled

creep), Power Law Breakdown Creep, Coble Creep, and Nabarro-Herring Creep. The

object is to be able to discuss the predominant creep mechanism at any instant during

creep or thermal cycling. In addition, the model incorporates the externally applied

stresses under a wide array of initial matrix conditions and applied stress ranges.

For a composite having two phases, the rule of mixtures given below applies:

<7c
= afVf +amVm (1)
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where, crand Fare the stress and volume fraction, and the subscripts c,/, and m refer to

the composite, fiber and matrix respectively. To ensure continuity at the fiber-matrix

interface (isostrain), the strain continuity equation may be expressed as:

sm = sf (2)

where s is the strain, and the subscripts m and/refer to the matrix and fiber respectively.

The strain of either phase is:

e = e
th +e el +s pl +s cr

(3)

where the superscripts th, el, pi and cr refer to thermal, elastic, plastic (time independent)

and creep deformation. For the temperature range of interest, the fiber for most MMC's

may be assumed to be elastic (i.e., sf
- £f

= 0). The thermal strain relation for the fiber

and matrix is:

sf

T-

th = jctfdT (4a)

s

T,

th = \ccmdT (4b)

T,

Where a is the coefficient of thermal expansion (CTE), and Ti, T2 , are the initial and final

temperatures respectively. The elastic stress strain relation for the fiber and for the

matrix constituent is:

(5a)

(5b)

sf

£m ~ E„
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where E is Young's Modulus. The plastic strain, as derived from the Ludwik relation is:

Pi

G„ =
K (6)

where a£ is the matrix yield stress, Kj and n is the work hardening coefficient and work

hardening exponent, respectively.

The creep strain, e^ may be obtained as:

= \*Zdt (7a)

for isothermal creep or

JC*-i (7b)

for thermal cycling creep, where
dT_

dt
is the reciprocal of the heating/cooling rate.

The creep rate e" , has contributions from both dislocation based and diffusional

mechanisms and may be represented as:

. cr . diff . Jisl

e = e + s
nj in m (8)

where the superscripts diff and disl are for the diffusional and dislocation creep (Appendix

A describes the conversion of the relevant creep expressions from the shear strain rate-

shear stress (f - z ) form given by Ashby and Frost [Ref. 23] to normal- strain rate,

normal stress form components, respectively. The diffusional creep rate ( e'ff ) may be

written as:
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.dxff 14Q diff

kid
(9)

where: r>7 =
eff

'^
+g>. (10)

DL =D e /kT
(11)

^gb =SD0gb
e * (12)

Q - atomic volume D - diffusivity

d - the matrix grain D - frequency factor

8 - effective thickness Q - activation energy for the appropriate

of the grain boundary diffusion path

b - Burgers vector k - Boltzman constant

T - absolute temperature

and the subscripts eff for effective, L for lattice (volume), gb for grain boundary.

The dislocation creep term ( e*
sl

) may be written in the Sinh form originally

proposed by Garofalo [Ref. 41] as modified by Frost and Ashby [Ref. 23]:

. disl

s_ =
rSX' AGJ ,

\a'J kT eff

-\n\

sinh
a'

Sg„
(13)

where: U
eff

DL +
10

uztg;
VnflpVj, (14)

<>PP
= a

p
Dpoe

/kT
(15)

nl - creep exponent

G„, - shear modulus

A - creep constant

a - cross sectional area of the dislocation core

a' - power law breakdown threshold

and the subscript/; is for pipe.
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Substitution of Equations (9) and (13) into Equation (8), provides the total matrix

creep strain:

4 14g

kTd 2 eff mDj?(J_A
'VT>

\
a

J

n\

kT *
sinh

a

V3G„

v n\
"

(
dT

)

).
>

Vdt)
— dT (16)

The total matrix strain is found by substitution of Equations (4b), (5b), (6) and (16) into

the left-hand side of Equation (2) results in;

2 am

T
l Em

t

yS
\

1
am - am\

± J

14Q diff <fr
n\

D„#- er„ +

kTd
2
u
eff °m

\a'J

AG„.b disl

°eff
kT

sinh

f \
a

a

-onV\

AVV3G m
m

dT

dt

-1

dT

and deriving the fiber strain found by substitution of Equation (4) into the right hand side

ofEquation (2) after replacing o/ as a function of a„, {a

(1), the rule of mixtures:

a mm
V,

), from Equation

T
2 °

la dT+-!!L +

T
m E

1

ys
a -a
m m

1 T
2

± I

14Q diff

D a +
2 eff m

kTd

ff3Y l AG b
disl

D
\a'J kT eff

ml

sinh

m '

= I a fdT +
T J

°a ~ amVm

-1
far
» — I

or
\dt.

(17)

Following Tyson [Ref. 38] Equation (17) may be expressed in differential (i.e.,

incremental) form as:

Ae„ = As f

*o*
r
- af

AT + AtfAaAf+A/' + As"! + AsZ = a rAT + As!
(18)
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Solving for Aam after substituting the appropriate expanded terms from Equation (17) into

Equation (18), gives the following:

AaA7±<

A<t„, = -"

14Q diff

D^r 0„ +

kTd
2
u
eff

am
sr

1

a'

J

AGJ> disl

D
eff

kT

-ml

sinh

^CVV3G

-1

Act,

AT-
EfVf

1 1

(19)

where

+— +

EfVf Em RWH

Aa = am - a
f

RWH = ^r
ds

pi "V

VL

(o"m " <rZ)

^ x-\
n-\

K,

(19a)

(19b)

In Equation (19), Aaa = 0, where aa = or constant for both thermal cycling or isothermal

creep/thermal cycling conditions. Therefore, Equation (19) does not account for the

effect of an externally applied stress. The methodology of incorporating the effect of aa

in the solution procedure is outlined later in section IV.A.2.

1. CALCULATION OF INDIVIDUAL MATRIX
STRAINS

During each iteration, the incremental strains are calculated as follows:

Ae'
h

= AaAT (20a)
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el Aa
As
m

m

m
(20b)

Ae" =
Aa -

RWH
(20c)

cr
Aem =

h)

14Q diff
f PT\

kTd
2
U
eff

am
VT

n\

\a' J

AG„,b disl

kT eff
si nil

a'

ViG
in

m J

n\

\{—
J

Finally, the total matrix stress and strain components are updated as:

th th th

£m(i)
= fm(i-l) + ASm

pi _ pi pi

£m{i) ~ £m(i-\) + ^£m

(21a)

(21b)

(21c)

(21d)

£m{i) ~ £m{,-\) + ^£n
(21e)

The total matrix creep strain can be further disseminated into Power Law (PL) creep, High

Temperature (dislocation lattice diffusion controlled creep) PL creep, Low Temperature

(dislocation pipe diffusion controlled creep) PL creep, Power Law Breakdown (PLB)

creep, Coble creep, and Nabarro-Herring creep. The following equations were used to

determine the individual creep strain components;

Power Law dislocation creep strain:

pl AGJ>
£m =m

kT Koc' J
1

3

Aa m(i-l)

bGm J

a D
p p

a'

V3G„
Aam('- 1)

At (22)

29



High Temperature (volume diffusion controlled climb) power law creep strain:

HT PL AGJ)

kT $v>
a'

V3G„
k°m(,-X0-1) At (22a)

Low Temperature (core diffusion controlled climb) power law creep strain:

LT PL AGJ)

kT

10 Aa
/»(;-!)

bG„
a DD Dp p

a 1

vjg'^^
At (22b)

Power Law breakdown (transition from climb-plus-glide to glide alone) dislocation creep

strain:

PLB AG„p
-m

kT \a'J

10
DL +—L

3

Act
m(i-\)

I bGm J

OpD
p

si nil

a
Aa.^ -«(/-!)

Jm

PL
At - sm At

(23)

The Power Law Breakdown creep strain is given in above form when the threshold matrix

stress is reached or exceeded (the Power Law for creep strain breaks down).

Coble (grain boundary) diffusional creep strain:

cobie 14Q ( nSSH^ (24)

Nabarro-Herring (lattice) diffusional creep strain:

—r^Ao- m(l_1)
A/

kTd'
(25)

where At, is the time step in seconds.
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Equation (19) is incrementally solved during thermal cycling or isothermal creep

(with temperature or time as the independent variable, respectively) using a computer

program (Appendix C) written in the MATLAB m
programming language.

2. INCORPORATION OF APPLIED STRESS IN MODEL

The above algorithm does not account for the effect of the applied stress (cra ),

since the term aa does not appear in Equation (19) (Aaa = for a constant <ja in both

thermal cycling or isothermal creep/thermal cycling conditions).

In order to account for the applied stress (<t„), one needs to compute the stress

induced in the matrix due to aa (crj). Depending on the initial residual matrix stress

state (crm ) prior to the application of aa , six scenarios can occur. They are described in

Tables 1 and 2, along with a listing of the corresponding expressions for o a

„ .

The incorporation of the effect of the applied stress in the initial value of a m ,
prior

to the start of the iterative solution outline above, is updated as follows:

total ap
0~ m = <J„, + <T„,
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B. NON-ISOSTRAIN UNIFIED LAW ANALYSIS

The conditions across the interface may be modeled as shown in Figure 2. Here,

the matrix is allowed to undergo a different longitudinal strain relative to the fiber. This is

accommodated by interfacial sliding due to the presence of interfacial shear stresses near

the ends of the fiber. The interface may be thought of as a periodic boundary with a

t h

I

—

Fiber

a" b'

a b"

i it

Matrix

nterface

c' £. t
V

r.. L
w

<>

r
f

—
*] Figure 2b

t Hh

Fibe Matrix

r~
rf—

\

Figure 2a

|—

r

ff
+h-*|

u = fiber displacement

v = matrix displacement

w = hy , interfacial displacment

tan = Yj= (v-u)/h

rh^ Figure 2c tan emax = Ymax= (lm-lf)/2h

Figure 2. The model represents various displacements near the end of the fiber.

peak to peak height of length h, which is assumed to represent the "width" of the
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interface, and of periodic lengths, represented by X. A simplified model based on Figure

2a is shown in Figure 2b. The dotted lines represent the displacements in the fiber,

interface and matrix. Dotted line a-d is the initial reference line in the undeformed state.

Dotted lines a'-b', b'-c', and c'-d' represent the displacements after longitudinal

deformation of the composite has occurred, and u represents the fiber displacement, w is

the interfacial displacement(equal to hy , where yt is the interfacial shear strain), and v the

matrix displacement. The details of the interfacial geometry are shown in Figure 2c.

On a global scale, it may be assumed that v * f(r), i.e., sm is constant for all r.

However, very close to the interface, v = f(r), and this results in an interfacial shear stress

Ti , which drives interfacial sliding. The interfacial shear strain at any value of z may be

represented as:

_ v(r = r
f
+h)-u(r = r

f ) _ z{\ + gj - z{\ + ef )

Yi
h h

or: ri = ]j(*.-*/) (26>

/ /
where < z < — . At z = — , the shear strain reaches its maximum value, which is

2 2

given by:

max /„ / \ ,

7, =±,{smsf)
(27)

2/2

Equation (26) forms the strain continuity equation for the non-isostrain condition, instead

of £/= sm for the isostrain condition.
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In Equation (16), sm has four components: em , sm , sm , em \ and sf has two

components: sf , ef . These can be found using the same approach as the analysis for

the isostrain condition found in section A of Chapter IV.

The interfacial creep rate proposed in Reference 40 is utilized to find y t

:

r,=K,(r,-T
)

where: K =
klti

(28)

(28a)

The interfacial shear stress ?; , in Equation (28) may be obtained from the following

relationship (Appendix C):

O n
(sm -sf

){z-^.)=(M + N)rl+^:

where M = hK.At

N =
'

l 1
A A,'+— + A^At

x nt

Q = nr
n

fAmbi

*cHff<

J

Ay In

\TfJ
A

d,ff
~ 42Qf

\-n

kTd

A
dls!

= {S)"
+l

AD,

H****.)
GJb

eff

< P
at GJ

(29)

/«, - Original length of the fiber [m]

lc - Critical fiber transfer length [m], and may be approximated as:

nt

<j f
- Fiber fracture stress [Pa]

ys

Tm - Shear yield strength of the matrix [Pa]

df - Diameter of the fiber [m]

h - Peak to peak height of interface [m]

Qi - Activation energy of the appropriate diffusion path [mV 1

]

K - Work hardening coefficient in tension [Pa]

K" - Work hardening coefficient in shear [Pa] (Appendix D)
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Gm - Shear modulus [Pa]

n - Stress exponent

b - Burgers vector [m]

d - Grain size [m]

6 - Effective thickness of the grain boundary [m]

Dgb
- Grain boundary diffusion [mY 1

]

Dl - Volume diffusion [mV 1

]

Deff
- Effective diffusion [mV 1

]

A - Dorn constant (for normal strain rate, s )

Q - Atomic volume [m
J

]

k - Boltzmann's constant [1.381e-23 J K"
1

]

R - Gas constant [8.3 14 J mole"
1

K'
1

]

T - Absolute temperature [K]

rf - Radius of the fiber

R - Radius from center of fiber to an arbitrary radial point

The threshold stress (Appendix E), z in Equation (28) may be estimated as:

(30)r- =2*
s,

i
480 n^-0.60
T

where A is the period of the interface and gr is the radial residual stress acting on the

interface at 300 K.

In incremental form, the interfacial shear strain may be written as:

Ar,:= rA* = ^^(t, - t )m (3i)

kTh

Equation (26) may be expressed in incremental form as:

Ay,=^(Aem -Aef )
(32)

Substitution of Equation (31) in Equation (32) results in:
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Where the terms Asm and Aef are given by Equation (18), Equations (20a) through (20d),

Equations (21a) through (21e), and Equations (22) through (25) in section A Chapter IV.

Substituting for Asm and Asj in Equation (33), the incremental matrix stress Aam results in

the following equation:

X'kAtJ E,V, \h) kTh
2 V ;

Aam = Js_ +± + -L-
(34>

E fVf

+
Em

+
RWH

CT

where sm is given by Equation (16).

The procedure to determine the various strains with or without an external applied

stress is identical to the isostrain case discussed in Subsections 1 and 2 of Section A

Chapter IV.

Sample calculations for the isostrain model are shown in Section A Chapter V.
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V. SAMPLE CALCULATIONS

A. MATERIAL PROPERTIES

Results for sample calculations based on the model for isostrain conditions the

fiber-matrix interface (Section A Chapter IV) are shown in this chapter. The hypothetical

composite consisting of a 0.4 volume fraction of continuous fiber SiC in a 1 100 Aluminum

matrix. The properties used for the computations are listed below:

MATRIX FIBER
(1100 Al) (SiC)

Melting Temperature [K] 933.47

Coefficient of Thermal Expansion (CTE) [1/K] 23e-6 4e-6

Young's Modulus at 300K [Pa] 65000e6 450000e6

Volume Fraction 0.6 0.4

Shear Modulus at 300K [Pa] 25000e6

Temperature Dependence, (Tm/Gm)(dGm/dT) -0.5

Work Hardening Constant [Pa] 500e6

Work Hardening Exponent 1.0

Lattice Diffusivity Frequency Factor, Di [m2
/s] 1.7e-4

Lattice Diffusion Activation Energy, Qj [J/mole] 142000

Grain Boundary pre-exponential, 5Dgbo[m
3
/s] 5e-14

Grain Boundary Activation Energy, Qgb [J/mole] 84000

Pipe pre-exponential, apDpo [m
4
/s] 7e-25

Pipe Activation Energy, Qp
[J/mole] 82000

Burgers vector, b [m] 2.86e-10

Atomic Volume, Q. [m3

]
1.66e-29

Dorn Constant, A
1

'~ \ z D 4-G b
e=A[ a

')
eff m

v
G-/ kT

3.4e6

Stress Exponent for Creep Equation 4.4

P-L Breakdown Threshold, a' [am/Gm]
1000

Grain Size, d [m] 25e-6

Universal Gas constant, R [J/ mole-K] 8.314

Boltzman constant, k [J/K] 1.38e-23

TABLE 3. MATERIAL PROPERTIES and CONSTANTS [Refs 23, 42, 43]
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A non-linear fit was obtained for the yield strength versus temperature data for

1 100 Aluminum based on the data taken from reference 43 for temperatures less than or

equal to 625 K. A linear fit between the yield strength and temperature greater than 625

K is covered. This is shown in the Figure 3.
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Figure 3. Curve fitted yield strength of 1 100 aluminum as a

temperature [Ref 43].

function of

B. THERMAL EXCURSIONS FOR THERMAL CYCLING
AND ISOTHERMAL CREEP SIMULATIONS

The Aluminum-SiC composite is cooled from the fabrication temperature (Tfab) OF

800 K to ambient temperature of 300 K, at constant rate of 1/60 K/second (Ks"
1

). At the
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fabrication temperature, the matrix stress and strain are assumed to be equal to zero. The

final matrix stress and matrix strain following cooling to 300 K are used as inputs for

subsequent calculations.

1. Thermal Cycling Simulation

The composite is heated at a rate of 1 .0 Ks"
1

from 300 to 700 K. The final matrix

stress and strain at 700 K are used as inputs for the simulations of the cooling leg from

700 to 300 K at constant rate of 1/60 Ks"
1

. This heating and cooling half legs constitute

one thermal cycle between 300 to 700 K. A discussion of the heating leg of the thermal

cycle is presented in Section B.

2. Isothermal Creep Simulation

Simulations of isothermal creep under conditions of constant applied stresses were

conducted at various temperatures (400, 523, 673, and 700 K). The result for isothermal

creep at 673 K at an applied stress of 50 MPa are discussed in Section C.

Following the initial conditions from the cooling from fabrication temperature to

ambient temperature is heated at 1 .0 Ks"
1

to the creep temperature. Then, the matrix

stress and strain states immediately after the application of the external stress are

calculated, following which, the time dependent simulation of deformation is carried out.
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C. THERMAL CYCLING: HEATING LEG FROM 300 TO 700 K

Only a discussion of the heating leg of the thermal when the conditions of zero

applied stress is provided to demonstrate the application of the isostrain model to thermal

cycling simulations.

The following Figures 4 through 9 represent the various conditions of stresses and

strains as the 0.40 volume percent SiC 6061 aluminum metal-matrix composite

commencing with an initial residual matrix stress of 36.414 MPa and initial residual strain

of-2.1214e-03. (The matrix stress of 36.414 MPa and strain of -2.1214e-03 result from

cooling from the fabrication temperature of 800 K to 300K.) The thermal excursion

constituted heating from the initial temperature of 300 K to the final temperature of 700 K

at a heating rate of 1 .0 K per second.

Figure 4 is a plot of the composite strain along the longitudinal direction. Around

390 K, a distinct 'knee' is observed where the composite displays a change in the

coefficient of thermal expansion (CTE), which is given by the slope of the strain versus

temperature curve.

Figure 5 shows the predicted residual matrix as a function of temperature. As the

composite is heated, the matrix stress is progressively relieved. Complete relief ofthe

composite is seen around 360 K where the matrix stress becomes compressive and reaches

a maximum (approximately -50 MPa) at around 390 K. At 700 K, a compressive residual

matrix stress of 1.9 MPa was predicted. Note that the 'knee' observed in Figure 4

corresponds to the 'knee' in Figure 5.
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The predicted thermal, elastic, plastic and creeping cumulative strains during the

entire heating temperature excursion is depicted in Figure 6. No plastic deformation is

observed because the residual stress at all temperatures is less than the temperature

dependent matrix yield strength. Around 390 K, matrix creep processes are activated.

Because of the presence of compressive matrix stress, compressive creep strains are

observed. As expected, the thermal strain monotonically increases with temperature, and

elastic strain shows a variation similar to that of the stress. It is evident that the creep

deformation after 390 K is responsible for the 'knee' observed in Figure 4.

Figures 7 through 9 shows variation of the incremental creep strain components

due to the various mechanisms as function of temperature during heating. The

components plotted include both dislocation and diffusional creep. The dislocation creep

is further subdivided into power law breakdown creep and total power law, in which total

power law can be split up into high temperature power law and low temperature power

law creep. These are depicted in Figure 8. The diffusional creep can be further be broken

down into Coble and Nabarro-Herring creep, shown in Figure 9.

It is apparent from Figure 7 that the primary contribution to the overall creep

strain is from dislocation creep. The total dislocation creep strain may be divided into

power law creep (including high temperature power law and low temperature power law

creep), and power law breakdown creep. These components are individually plotted in

Figure 8. Power law breakdown creep becomes active at approximately 375 K and

dominates creep mechanisms up to 420 K, reaching a maximum at 400 K. This

corresponds to an increasing matrix stress that is also maximum in the vicinity of400 K.
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At higher temperatures, and relatively lower stresses, diffusional creep begins to

contribute to the overall creep strain. In this particular case it is a very small contribution

compared to the contribution form the dislocation creep mechanisms. As expected, Coble

creep is predominant at the lower temperatures, starting around 450 K in Figure 9; and

Nabarro-Herring creep is predominant at the higher temperatures, and dominates at a

temperature greater than 685 K (Figure 9).

As shown above, the model appears to yield reasonable predictions of the various

deformation mechanisms, which dominate during the different temperatures and stresses

during the temperature excursions.

46



0.002

0.0015

g 0.001

w
a
o 0.0005

...; -»."
,

Matrix Strain

-0.0005

300 350 400 450 500 550 600 650 700

Temperature [K]

Figure (4) Total cummulative matrix strain during temperature excursion

from 300 to 700 K.

4.000 10'

2.000 10
7

M
-2.000 10

7

-4.000 10
7

-6.000 10
7

300 350 400 450 500 550 600 650 700

Temperature [K]

Figure (5) Matrix stress during temperature excursion from 300 to 700 K.

47



a

d
e

I
o

J3

I

0.01

0.005
—

-0.005
—

-0.01

300 350 400 450 500 550 600 650 700

Temperature [K]

Figure (6) Cummulative Thermal, Elastic, Plastic, and Creep strains

during the temperature excursion from 300 to 700 K.

2.000 10"

3
d
d
o
& -2.000 10"'

o
O 7w

-4.000 10 ' -

Pi
0>
V
5 -6.000

10"~

3 -8.000 10"'

8 -i.oooio"
-

d

iiimnmno i

DiffusionaJ Creep

Dislocation Creep

SMttfaOBqj ttt!)

-1.200 10"°

300 350 400 450 500 550 600 650 700

Temperature [K]

Figure (7) Dislocational and Diffusional Creep strains during the temperature
excursion from 300 to 700 K.

48



2.000

g a. -6.000

So

10" -r

-8.000 10 —
-6

Low Temperature

,o° " * Power LawCreep (diamond)

8*- o°

M.. -Hrgh Temperature-

Power Law Creep (x)

- Power Law Creep Strain (square)

-1.000 10

300 350 400 450 500 550 600 650 700

Temperature [K]

Figure (8) Total Power Law, which includes high and low Temperature power
law creep, and power law breakdown strains during the

temperature excursion from 300 to 700 K.

49



•a

.2

5.000 10"

o^r
f

r

-5.000 10"9 -F~

8_L.
1.000 10

V) «
d d^ o

35
d

S «

Q U -2.000 10
d

-1.500 10
8_i_.

8 _L

-2.500 10"

Nabarro-Herring Creep (diamond)

Commulative Diffusional

Creep (circle)

Coble Creep (square)

•°d1

300 350 400 450 500 550

Temperature [K]

600 650 700

Figure (9) Total Diffusional Creep which includes the incremental Coble
and Nabarro-Herring Creep strains during temperature excursion

from 300 to 700 K.

50



D. ISOTHERMAL CREEP WITH CONSTANT APPLIED
STRESS

The application of the model to isothermal creep conditions at a temperature of

673 K and under a constant applied load of 50 MPa is discussed for a 40 volume percent

continuous SiC fiber reinforced 1 100-A1 matrix composite with a grain size of 10 (im.

It is to be noted that the applied composite stress of 50 MPa is large enough to

cause some plastic deformation of the matrix prior to creep. Figures 10 through 15

represent the various conditions of stresses and strains as the composite commences

creeping isothermally with an initial residual compressive matrix stress of 2.4023 MPa and

an initial residual strain of -5.0001e-04 (the initial residual matrix stress and residual

matrix strain are the results form cooling of the composite from the fabrication

temperature to ambient temperature). The behavior is shown only for the first 300

seconds of creep, since rapid changes in stress and strain occur during this initial period

under the assumes conditions (50 MPa at 673 K).

Figure 10 shows the cumulative creep strain curve as a function of creep time.

Clearly only a primary stage is observed up to 300 seconds. Correspondingly, the matrix

stress in Figure 1 1 is seen to decrease, indicating that the matrix is undergoing stress

relaxation, resulting in the progressive transference of the applied stress to the fiber.

Interestingly, the matrix stress decreases very rapidly after a few seconds after the starting

value and then decreases more slowly. This is because the high initial matrix stress drives

the rapid matrix creep, causing accelerated matrix stress relaxation. Figure 12 shows

plots of the cumulative matrix elastic and creep strains as a function of creep time. It is
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clear that the elastic strain shows a behavior to that of the matrix stress. While the elastic

strain drops due to continued stress relaxation, the creep strain increases as expected.

Further, there is no plastic strain induced, the matrix stress decreases continuously. Since

temperature is a constant, no thermal is induced either.

The individual creep contributions are depicted in Figures 13 through 15. Figure

13 shows that dislocation creep is the predominant deformation mechanism during the

early part of the creep. Later (after about 40 seconds), The matrix stress is significantly

lower than the starting value, diffusional creep becomes the predominant deformation

mechanism, and remains so thereafter. This is because the matrix stress is too low to

cause a significant strain rate via dislocation creep.

Figure 14 shows the contribution of the Power Law Breakdown (PLB) and Power

Law (PL) mechanism to the overall dislocation creep strain. It is clear that at the relevant

applied stress-temperature combination, PL creep is the dominant mechanism. Power law

creep may be further subdivided into dislocation pipe diffusion controlled power law creep

(Low Temperature Power Law or LTPL) and volume diffusion controlled power law

creep (High Temperature Power Law or HTPL). These components are also shown in

Figure 14. It is evident that at 673 K, the contribution ofHTPL dominates PL creep.

Figure 15 shows the contributions of Coble and Nabarro-Herring components to

the total diffusional creep strain at any instant during creep. At the given temperature and

stress loads, both mechanisms contribute comparably, with the Coble creep rate being

somewhat higher.
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All these trends are in quantitative agreement with the trends expected on the basis

of steady state deformation maps. Although the initial creep rate is very rapid (i.e., at

very low times) appears to be rather too rapid. It is therefore concluded that the model

seems to be reasonable mechanistic prediction, it needs to be validated on the basis of

extensive experimental work on a simple model system, where the predominant

deformation mechanism may be discerned straightforwardly by electron microscopy

following creeping to different times.

Thus, it would seem that the model make reasonable prediction for this particular

simulation. Actual creep experiments are required to validate model.

53



2.70 10

.3 2.68 W4

M -4
* 2.67 10^

.5
w
Si, 2.65 10^

o

^ 2.63 10^

3
** 2.62 10

-4

2.60 10"4

-i—i—i—

r

n—i—i—i—i—

r

i i i i i i i r

_L_I I I I I 1_ I , , , I

673K, 50 MPa
t i ,i I i i i i

50 300100 150 200 250

Time (seconds)

Figure (10) Total composite stress of a 40 volume percent SiC continuous fiber

reinforced 1 100-A1 matrix composite as a function of creep time at 673 K
under an applied composite stress of 50 Mpa.

4.00 10'

3.50 10

eu 3.oo io
b

K
tT 2.50 10

b

«
§ 2.00 10

6

M
.a i.5o io

6

S
jj 1.00 10

b

.6 L

5.oo i(r

0.00 10

1 1 1 ! 1 1 1 1 1 1 1 1 1 1 I !! 1 1 1 1 1 I 1

j

t

1

T~
4
J

673K, 50MPa J

J

J

"i

J
4

_ i

»

_ «

-_

i i i i ! i i i i i i i i i i i i i i i i i i i i i i i i

50 100 150 200

Time (seconds)

250 300

Figure (11) Variation of matrix stress (cm) with time during isothermal creep at 673 K
under an applied stress of 50 Mpa.

54



2.20 10"

M £3 1.76 10

s§
Eg,
» d 1.33 10^

is

t—i—I—i—

r

3-

—i—i—i—
i j J„ '_ i-'-l- 1 J - u ''"t

"'"

Creep

I

5 g 8.88 10
-5

4.50 10
-5

V Elastic 673K, 50MPa

H
, , , , |

, , , , | ,
, , , I , , , i r ! i i i Hi i -i—i_l

200 250 30050 100 150

Time (seconds)

Figure (12) Variation of total elastic and creep strains as a function of creep time at

during isothermal creep at 673 K with an applied composite stress of 50

MPa.

8.00 10
-9

d «-9 t« 7.00 10

o
& 6.00 10

o
O 5.00 10

-i—i—i—i—I—i—i—r—
i I

r -i—|—i—i—i—i—|—i—i—
i

r
|

i i r

673K, 50 MPa

: ° Dislocation Creep

g 4.00 10

W
-9

•d 3.00 10
y

23 2.00 10

5 l.oo io"
9

9

-9

-9 t

0.00 10

Diffusional Creep

50 250 300100 150 200

Time (seconds)

Figure (13) Instantaneous values of dislocation and diffusional creep strains as

functions of creep time during isothermal creep at 673 K with an applied

composite stress of 50 MPa.

30



« 8.00 10"9

P
2> -9

S 7.00 10

P<

| 6.00 10"9

o
M

.9
Pi 5.00 10

^

0>
0»

y 4.00 10"9

. X

- X

-9L
.3 3.00 10

O
•3 2.00 10"9

P

§ 1.00 10"9

o»

a o.oo io
u

p

-i—i—i—i—I—i—i—i—i—I—i—i—I—i—I—i—i—i—i—I—i—I—i—i—I—i—i—i—

r

X

X
X
X
X
X
X

673K, 50 MPa

Total PL creep = HT Power Law creep

PLB creep and LT Power Law creep

50

MNMMMWi
250 300100 150 200

Time (seconds)

Figure (14) Instantaneous values of total power law creep strain, comprising of high

temperature and low temperature power law creep strains. Also shown is

the instantaneous power law breakdown creep strain.

2
P
o

f
o

2.50 10"

2.00 10'
9 _

o
o

1

1.50 10
-9

5 o.oo io°

-i—i—i—i—i—i—i—i—i—I—i—i—i—

r

673K, 50 MPa

Total Diffusional Creep

50 100 150 200 250 300

Time (seconds)

Figure (15) Instantaneous values of total diffusional creep strain, comprising Coble

and Nabarro-Herring creep strains, as functions of creep time during

isothermal creep at 673 K with an applied composite stress of 50 MPa.

56



VI. SUMMARY

1. A one-dimensional analytical model for axial deformation of continuous fiber

reinforced metal-matrix composites under both thermal cycling and isothermal

creep, with or without externally applied stresses, has been developed. The

model assumes that the fiber is thermo-elastic and the matrix is thermo-elastic-

plastic-creeping. The model accounts for the following effects :

a. Changing dislocation and diffusional matrix creep mechanisms via the use

of unified creep laws. This allows separation of the total matrix creep

into dislocation and diffiisional creep components. The dislocation creep

strain may be further separated into power-law breakdown and power law

creep, including high temperature power law creep (volume diffusion

controlled) and low temperature power law creep (dislocation core

diffusion controlled), whereas the diffiisional creep strain may be split into

the Coble and Nabarro-Herring creep components. This allows the

identification of the dominant creep mechanism at any instant during

creep/thermal cycling, and is thought to enable the generation of transient

deformation mechanism maps in the future.

b. Time-dependent, diffusional sliding of the interface, following a diffusional

flow law with a threshold stress, based on recent experimental studies of

single-fiber composites. The incorporation of such time-dependent

interfacial sliding allows simulation of non-isostrain deformation of the
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fiber and matrix near fiber-ends, where large shear stresses are usually

present, and thus is able to explain the frequently observed strain

incompatibility between the fiber and matrix, especially during thermal

cycling experiments,

c. Finally, the model is strain-history sensitive, and therefore allows accrual of

stresses and strains during a series of thermal and/or load excursions.

Two versions of the model - one excluding interfacial sliding (isostrain model) and

one including interfacial sliding (non-isostrain model) have been developed.

Results from two sample calculations (one for constant rate heating without an

applied stress and one for isothermal creep in the presence of a constant applied

stress), based on the isostrain model are reported, showing the predominance of

various creep mechanisms at different times/temperatures. Because of its ability

to calculate the matrix stress state and discern the predominant matrix creep

mechanism at any instant during isothermal creep or thermal cycling, it is thought

that this model will eventually allow the generation of transient deformation

mechanism maps for axial straining of continuous fiber reinforced metal-matrix

composites. The results indicate that the regimes of dominance of the various

creep mechanisms are qualitatively reasonable, suggesting that the model is

phenomenologically correct.
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4. It is recommended that experiments on a simple model system be conducted to

validate the model in the near future.
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APPENDIX A. CONVERSION OF SHEAR STRAIN RATE-SHEAR
STRESS EQUATIONS TO NORMAL STRAIN
RATE-NORMAL STRESS FORMS

A.l DIFFUSIONAL CREEP

From Frost and Ashby [Ref. 23], we have for the shear strain rate by diffusional

creep:

rw=-z$~D7 (a.i.1)
kid

where j^ - shear strain rate for diffusion D
eff

= D e

as
- shear stress [MPa] D - frequency factor [mV 1

]

Q - atomic volume [m3

] Q - Activation energy for the

k - Boltzman constant [JK"
1

] appropriate diffusion path [kJmol
1

]

d - grain size [m] T - absolute temperature [K]

The von Mises effective stress (am ) and strain are related to the matrix shear stress and

strain as follows:

°* = °-rV3 (A. 1.2)

Substitution of Equations (A. 1 .2) into Equation (A. 1 . 1 ), and solving for em results in

Equation (10) found in Section A Chapter IV:

m =
14o ma m

m
kTd

2 eff ( }

A.2 DISLOCATION CREEP

From Frost and Ashby [Ref. 23], the shear strain rate by dislocation creep for

power-law creep and power-law breakdown is given as:
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Ym = 4'
GJ>D

eff

kT
sinh

a'
(A.2.1)

where A£ is a constant, ri is the stress exponent, and y dlsl
is the shear strain rate for

dislocation. For power-law creep, the hyperbolic sine term, sinh
(a' \

VGm J

approaches

a'
a

s
in Equation (A.2.1) and becomes:

7PL= A
2

GJbD.m eff

kT

a' \
n

o

.

(A.2.2)

Substituting Equations (A. 1.2) in Equation (A.2.2), results in:

YPL= A
2

Gjd).-r~'- Vm eff

kT .Gm & (A.2.3)

This is equivalent to the shear stress rate-equation for power-law:

r PL
= A2

GmbDeff
f ~ V

kT \Gmj

(A.2.4)

Correlating like terms in Equation (A.2.3) and Equation (A.2.4) gives the following:

Ala* =A
2

(A.2.5)

n =n (A.2.6)

Equation (A2.4) is equivalently written in terms of tensile stress and strain rate and

becomes:

s =

V3
n + \

(A.2.7)

where the equivalent constant A, for tensile stress and strain rate is represented as:
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A
2 =(j3)

n+l

A (A.2.8)

o

f Y

GJ
D. (A.2.9)

Substituting Equations (A. 1.2), and Equations (A.2.7) through (A.2.9) into Equation

disl

(A.2.1), and solving for sm results in Equation (13) found in Section A Chapter IV:

. disl

S_ =

n\

kT eff
sinh
v<0
V3G,

-ml

(13)

where

(14)

D.
disl

eff -.

DL +
10 'a^

\b
2
J

f .— A,GJ p
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APPENDIX B. MATLAB COMPUTER CODE FOR ISOSTRAIN
UNIFIED CREEP LAW

% PROGRAM FOR CONT FIBER MMCS WITH RIGID INTERFACE (ISOSTRAIN) AND UNIFIED
% LAW CREEP CAPABLE OF HANDLING A NON-ZERO APPLIED STRESS

%% LAST REVISION DATE : 15 JANUARY 1997

clear all

format short e % Sets floating point format with 5 digits.

M= 10000; % M=inputCEnter the number of steps, M: ')

PD= 100; % MAKE STEP SIZE (M) LARGER IF DIVISION BY ZERO ERROR OCCURS ! !

!

% DJMENSIONALIZE ARRAY VARIABLES

time=zeros( 1 ,M+4);

temp=zeros(l,M+4);

sigma_m=zeros( 1 ,M+4);

sigma_y=zeros( 1 ,M+4);

sigma_yl=zeros( 1 ,M+4);

d_sigma_m=zeros( 1,M+4)

;

d_thstress=zeros( 1 ,M+4);

Deff=zeros(l,M+4);

Dl=zeros(l,M+4);

apDp=zeros(l,M+4);

Em=zeros( 1 ,M+4);

Gm=zeros(l,M+4);

Kl=zeros(l,M+4);

c=zeros(l,M+4);

creep_strain=zeros( 1 ,M+4);

total_str=zeros( 1 ,M+4);

total_elastic_str=zeros( l,M+4);

totaljplastic_str=zeros( 1 ,M+4);

total_creep_str=zeros( 1 ,M+4);

total_thermal_str=zeros( 1 ,M+4);

test 1 =zeros( 1 ,M+4);

test2=zeros(l,M+4);

num=zeros( 1 ,M+4);

den=zeros(l,M+4);

invrwh=zeros( 1 ,M+4);

rwh=zeros( 1 ,M+4);

diff_crp_str=zeros( 1 ,M+4);

NH_crp_str=zeros( 1,M+4)

;

A_NH=zeros(l,M+4);

Coble_crp_str=zeros( 1 ,M+4);

A_Coble=zeros( 1 ,M+4);

disl_crp_str=zeros( 1,M+4)

;

PLB_crp_str=zeros( 1 ,M+4);

PL_crp_str=zeros( 1 ,M+4);

LT_PL_crp_str=zeros( 1 ,M+4);
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HT_PL_crp_str=zeros( 1 ,M+4);

A_Disl_vol=zeros( 1,M+4);

A_Disl_pipe=zeros( 1,M+4);

L=zeros(l,M+4);

total_disl_crp_str=zeros( 1,M+4);

total_diff_crp_str=zeros( 1 ,M+4);

%%%%%%%%%% ENTER INITIAL AND FINAL CONDITIONS %%%%%%%%%%

rate = -l/6(

tempinit = 700;

tempfinal = 300;

% rate=input('Enter Cooling (-) / Heating (+) rate, rate [K/sec]:')

% temp_init=input('Enter the initial temperature, temp_init [K]:')

% temp_flnal=input('Enter the final temperature, temp_flnal [K]:')

sigma_m_init =-1.9059e6;

total_str_init = 1.5156e-3;

appl_stress = 0.00e6;

% sigma_m_init=input('Enter the initial matrix stress state,

% sigma_m_init [Pa]:')

% sigma_m_init has to be smaller than sigmayl for isothermal creep

% total_str_init=input('Enter the initial total strain, total_str:')

% appl_stress=input('Enter the applied stress, appl_stress [Pa]:')

%%%%%%% INPUT MATERIAL PROPERTIES FOR CALCULATIONS %%%%%%%%%%%

Tmelt = 933;

alpha_m = 23e-6;

alpha f = 4e-6;

Ef = 450e9;

Vf = 0.4;

Emo = 65e9;

Gmo = 25e9;

TDepend = -0.5;

Klo = 5e9;

n = 1.0;

Dlo = 1.7e-4;

Ql = 142000;

delDgbo = 5e-14;

Qgb = 84000;

apDpo

Op

= 7e-25;

= 82000;

b

Omega
A

= 2.86e-10;

= 1.66e-29;

= 3.4e6;

z

alpha_prime

= 4.4;

= 1000;

d

R
K

= 25e-6;

= 8.314;

= 1.38e-23;

alpha=alpha_prime/sqrt(3);

% T_melt=('Enter the matrix Melting Temp., T_melt (K):')

% alpha_m=('Enter the matrix CTE, alpha_m [1/K]:')

% alpha_f=('Enter die fiber CTE, alpha_f [1/K]:')

% Ef=input('Enter Youngs Modulus for the fiber, Ef [Mpa]:')

% Vf=input('Enter die volume fraction of the fiber, Vf [0.XX]:')

% Emo=input('Enter Matrix Youngs Modulus at 300K, Emo [Mpa]:')

% Gmo=input('Enter Matrix Shear modulus at 300K, Gmo [Mpa]:')

% T_Depend=input('Enter Temp Dependence of Modulus,

% (Tm/Go)(dG/dT), T_Depend:')

% Klo=input('Enter work hardening constant, Klo [Mpa]:')

% n=input('Enter the work hardening exponent, n:')

% input('Enter the frequency factor for diffusivity), Do [mA2/s]:')

% input('Enter the Activation Energy for diffusion, Q [J/mole]:')

% delDgbo=nput('Enter the Grain Boundary pre-exponential, delta *

%Dgbo[mA
3/s]:')

% Qgb=input('Enter the Grain Boundary Activation Energy, Q
% [J/mole]:')

% apDp=nput('Enter the Pipe pre-exponential, ap * Dpo [mA4/s]:')

% Qp=input('Enter the Pipe pre-exponentialActivation Energy, Q
% [J/mole]:')

% b=input('Enter the Burgers vector, b [m]:')

% Omega=input('Enter the Atomic Volume, Omega [mA3]:')

% A= input('Dorn Constant [str rate =

% A*((sigma_m/G)Az)*Deff*G*b/(k*T)], L:')

% z=input('Enter stress exponent for creep equation, z :')

% alpha_prime=input('alpha_prime, the value of sigma/G for P-L

% Breakdown, Frost+Ashby:')

% d=input('Enter tlie matrix grain size, d [m]:')

% Universal Gas constant [J/mole-K]

% Boltzman constant [J/K]

% alpha is in tension, alpha_prime in shear (Frost+Ashby)
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%%%%% PROPERTIES OF 1 100 AL

PP=43.625;

QQ=-0.009;

RR=-6.75255e-5;

MM=35.2082;

NN=0.0377365;

%%%%%%% TfflS SECTION CALCULATES THE MATRIX STRESS AFTER APPLYING AN
%%%%%%% EXTERNAL STRESS AT T=temp_init

% Calculate matrix stress and strain due to appl stress

E_m=Emo*(l+((temp_init-300)^T_melt)*T_Depend); % Find Em at creep temp
G_m=Gmo*(l+((temp_init-300)/T_melt)*T_Depend); % Find Gm at creep temp
K_l=Klo*(l+((temp_init-300)AT_melt)*T_Depend); % Find Plastic Modulus at creep

% temp
E_c=E_m*( 1 -Vf)+Ef*Vf; % Composite modulus at creep

% temp

if appl_stress>0 % associate sign of yield strength with sign of appl_stress

constant=l;

else

constant— 1;

end

%%%%% Yield stress (Pa) of annealed 1100 Al at temp_init

if(temp_init<=625)

% Power 2 fit for low T region

sigma_ys=(PP+QQ*temp_init+RR*temp_initA2)*le6;

else

end

% Linear fit for Hi T region

sigma_ys=(MM-NN*temp_init)* le6;

if abs(sigma_m_init)>abs(sigma_ys)

sigma_yield=constant*abs(sigma_m_init);

else

sigma_yield=constant*sigma_ys;

end

% SIX VARIOUS APPLICATIONS OF EXTERNAL LOAD TO PRODUCE SIGMA_M_o

if sigma_m_init*appl_stress>=0 % initial stress and appl stress have the same sense (sign)

if abs(sigma_m_init)>=abs(sigma_yield)

% CASE II : PLASTIC LOADING
del_sigma_m_app=K_l*appl_stress/(Ef*Vf+K_l*(l-Vf));

eps=appl_stress/(Ef*Vf+K_l*(l-Vf)) + sigma_m_init/E_m;

del_strain_app=eps-(sigma_m_init/E_m); % total strain increment during loading
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elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix during

% loading

plast_strain=del_strain_app-elast_strain; % plastic strain induced in matrix during

% loading

else

ifabs(appl_stress)>=(abs(sigma_yield-sigma_m_init)/E_m)*E_c;

% CASE I : ELASTO-PLASTIC LOADING
eps=(appl_stress-((sigma_yield-sigma_m_init)/E_m)*E_c)/(Ef*Vf+K_l *

. .

.

( 1 -Vf))+sigma_yield/E_m;

del_sigma_m_app=(sigma_yield-sigma_m_init)+K_l*(eps-sigma_yield/E_m);

del_strain_app=eps-(sigma_m_init/E_m);

elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix

% during loading

plast_strain=del_strain_app-elast_strain; % plastic strain induced in matrix

% during loading

else

% CASE VI : ELASTIC LOADING
del_sigma_m_app=E_m*appl_stress/E_c;

eps=(appl_stress/E_c)+(sigma_m_init/E_m);

del_strain_app=eps-(sigma_m_init/E_m);

elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix

% during loading

plast_strain=0; % plastic strain induced in matrix

% during loading

end

end

else % initial stress and appl stress have opposite signs

if abs(appl_stress)>=(abs(sigma_yield-sigma_m_init)/E_m)*E_c

% CASE HI : ELASTIC UNLOADING + ELASTIC-PLASTIC LOADING
eps=(appl_stress-((sigma_yield-sigma_m_init)/E_m)*E_c)/(Ef*Vf+K_l*...

(l-Vf))+sigma_3rield/E_m;

del_sigma_m_app=(sigma_yield-sigma_m_init)+K_l*(eps-sigma_yield/E_m);

del_strain_app=eps-(sigma_m_init/E_m);

elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix

% during loading

plast_strain=del_strain_app-elast_strain; % plastic strain induced in matrix

% during loading

else

if abs(appl_stress)<=(abs(sigma_m_init))*E_c/E_m

% CASE V : ELASTIC UNLOADING ONLY
del_sigma_m_app=appl_stress*E_m/E_c;

eps=(appl_stress/E_c)+(sigma_m_init/E_m);

del_strain_app=eps-(sigma_m_init/E_m);

elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix

% during loading

plast_strain=0; % plastic strain induced in matrix

% during loading

else

% CASE IV : EASTIC UNLOADING + ELASTIC LOADING
del_sigma_m_app=appl_stress*E_m/E_c;

eps=(appl_stress/E_c)+(sigma_m_init/E_m);
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del_strain_app=eps-(sigma_m_init/E_m);

elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix

% during loading

plast_strain=0; % plastic strain induced in matrix during loading

end

end

end

sigma_m_total=sigma_m_imt+del_sigma_m_app; % matrix stress = initial residual stress + applied

% increment

strain_total=total_str_init+del_strain_app; % matrix strain = starting strain + strain due to appl

% stress

%% END OF THE SIX CASES OF APPLIED LOADS

%%%%% The following input stmts are to generalize the prgm for both th cycling and isothermal creep

if temp_init==temp_final

time_init=2; % input('Enter the start time, time_init [s]: ');

time_final=input('Enter the finish time, time_final [s] : ');

time_interval=time_final-time_init;

else

end

time_interval=(temp_final-temp_init)/rate;

time init=0;

% Set up initial array values

time(2)=0; % time prior to appln of ext stress

time(3)= 1

;

% time corresponding to appln of external stress

time(4)=time_init; % time at start of creep or thermal cycling

temp(2)=temp_init; % temp at time(2)

temp(3)=temp(2); % temp at time(3)

temp(4)=temp(3); % start temperature for thermal cycling

total_str(2)=total_str_init; % initial strain before applying external stress,ie., at time(2)

total_str(3)=strain_total; % matrix strain after applying ext stress

total_str(4)=total_str(3); % matrix strain just prior to start of creep or thermal cycling

total_elastic_str(4)=elast_strain; % elastic strain just after applying external stress

total_plastic_str(4)=plast_strain; % plastic strain just after applying external stress

sigma_m(2)=sigma_m_init; % matrix stress prior to appln of external stress.

sigma_m(3)=sigma_m_total; % matrix stress after applying ext stress

sigma_m(4)=sigma_m(3); % matrix stress just prior to start of creep or thermal cycling

%%%%%%%%%% START OF CALCULATIONS %%%%%%%%%%

% set time and temp steps

timeStep=time_interval/M; % Calculation of time step.

tempStep=timeStep*rate; % Calculation of temperature steps.
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d_alpha=alpha_m-aJpha_f; % Difference between matrix and Fiber CTE

%%%%%%%%%%%%% BEGIN ITERATIONS %%%%%%%%%%%%%%%%%%

for i=5:M+4 % Set counter from 5 to the # of steps plus 4 (M+4)

temp(i)=temp(i-l)+tempStep; % New temperature at ith step

time(i)=time(i-l)+timeStep; % New time at ith step

Em(i)=Emo*(l+((temp(i)-300)/T_melt)*T_Depend); % Find Temperature Dependent Em
Gm(i)=Gmo*(l+((temp(i)-300)/T_melt)*T_Depend); % Find Temperature Dependent Gm
Kl(i)=Klo*(l+((temp(i)-300)/T_melt)*T_Depend); % Find Temperature Dependent Plastic

% Modulus

Dl(i) = Dlo*exp(-Ql/(R*temp(i))); % Lattice diffusivity

apDp(i) = apDpo*exp(-Qp/(R*temp(i))); % Pipe diffusivity * area fraction of disln pipe

Deff(i) =Dl(i)+(10/3)*apDp(i)*(l/bA2)*(abs(sigma_m(i-l))/Gm(i))A2;

% Effective Diffusivity for Disl creep

delDgb(i) = delDgbo*exp(-Qgb/(R*temp(i))); % Grain Boundary diffusivity*Grain Bdy width

% Yield stress (Pa) of annealed 1100 Al (T<=625K from Metals Handbook, T>625K assumed)

if(temp(i)<=625)

% Power 2 fit for low T region

sigma_yl(i)=(PP+QQ*temp(i)+RR*temp(i)A2)*le6;

else

% Linear fit for Hi T region

sigma_yl(i)=(MM-NN*temp(i))* le6;

end

%%%%%%%%%% Calculate Various Creep Constants %%%%%%%%%%

L(i)=A*((Gm(i)*b)/(K*temp(i)))/(alphaAz); % Pre - Sinh coeff for tension in Frost+Ashby's eqn

% Nabarro-Herring creep rate = A_NH*sigmam
A_NH(i)=14*Omega*Dl(i)/(K*temp(i)*dA2);

% Coble creep rate = A_Coble*sigmam

A_Coble(i)=14*Omega*(3.14/d)*delDgb(i)/(K*temp(i)*dA2);

% const for lattice diff contribution in Garofalo's sinh law

A_Disl_vol(i)=L(i)*Dl(i);

% const for pipe diff contr. in Sinh law

A_Disl_pipe(i)=L(i)*(10/3)*apDp(i)*(l/bA2)*(abs(sigma_m(i-l))/Gm(i))A2;

% CALCULATE UPDATED YIELD STRENGTH

if (sigma_m(i-l) < 0) % for compressive matrix stress

if (abs(sigma_m(4)) > abs(sigma_yl(5)))

sigma_y(i)=-sigma_yl(i)-(abs(sigma_m(2))-abs(sigma_yl(3)));

else

sigma_y(i)=-sigma_yl(i);

end

c(i)=-l;
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else % for tensile matrix stress

if (abs(sigma_m(4)) > abs(sigma_yl(5)))

sigma_y(i)=sigma_y 1 (i)+(abs(sigma_m(2))-abs(sigma_y 1 (3 )));

else

sigma_y(i)=sigma_yl(i);

end

c(i)=l;

end

%%%%%%%%%% FIND rwh AND invrwh %%%%%%%%%%%

test 1 (i)=abs(sigma_m(i- 1 ))-abs(sigma_y(i));

test2(i)=abs(sigma_m(i-2))-abs(sigma_y(i));

DUMMY2(i)=sigma_m(i- 1 );

if(testl(i)<=0)

invrwh(i)=0;

DUMMY(i) = 5;

else

if(test2(i)<=0)

rwh(i)=K 1 (i)*n*((abs(sigma_m(i- l)-sigma_y(i)))/K 1 (i))
A
((n-l)/n);

%if (rwh(i)<= le5) % when (sigma_m(i-l)-

% sigma_y(i)) is too large, rwh becomes too small

% invrwh(i)=0;

% therefore, make inrwh=0 rather than letting it go to infinity

%else

if (sigma_m(i-l)< 0)

invrwh(i)=- l/rwh(i);

else

invrwh(i)= l/rwh(i);

end

%end

else

DUMMY(i) = 10;

if ((sigma_m(i-l)==sigma_m(i-2))
|
(abs(sigma_m(i-l)) < abs(sigma_m(i-2))))

invrwh(i)=0;

DUMMY(i)=20;
else

rwh(i)=Kl(i)*n*((abs(sigma_m(i-l)-sigma_m(i-2)))/Kl(i))A((n-l)/n);

%if(rwh(i)<=le5)

% when (sigma_m(i-l)-sigma_m(i-2)) is too large, rwh becomes too

% small

% invrwh(i)=0;

% therefore, make inrwh=0 rather titan letting it go to infinity

%else

if (sigma_m(i-l)< 0)

invrwh(i)=-l/rwh(i);

else

invTwh(i)= l/rwh(i);

end

%end
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DUMMY(i)=30;
end

end

end

%%%%%%%%%% Find Differential Thermal & Matrix Creep Strains %%%%%%%%%%

del_th_strain=d_alpha*tempStep;

NH_crp_str(i)=c(i)*A_NH(i)*abs(sigma_m(i-l))*timeStep;

Coble_crp_str(i)=c(i)*A_Coble(i)*abs(sigma_m(i-l))*timeStep;

diff_crp_str(i)=NH_crp_str(i)+Coble_crp_str(i);

%% The following eqns for disln creep are based on Frost+Ashby's Sinh Law

disl_crp_str(i)=c(i)*(A_Disl_vol(i)+A_Disl_pipe(i))*((sinh(alpha*abs(sigma_m(i-l)/Gm(i))))Az) *...

timeStep;

PL_crp_str(i)=c(i)*(A_Disl_vol(i)+A_Disl_pipe(i))*((alpha*abs(sigma_m(i-l)/Gm(i)))Az)*timeStep;

LT_PL_crp_str(i)=c(i)*A_Dislj5ipe(i)*((alpha*abs(sigma_m(i-l)/Gm(i)))Az)*timeStep;

HT_PL_crp_str(i)=c(i)*A_Disl_vol(i)*((alpha*abs(sigma_m(i-l)/Gm(i)))Az)*timeStep;

PLB_crp_str(i)=disl_crp_str(i)-PL_crp_str(i);

creep_strain(i)=diff_crp_str(i)+disl_crp_str(i);

%%%%%%%%%% Find Stress Increments %%%%%%%%%%

num(i)=del_th_strain+creep_strain(i);

den(i)=(l/Em(i))+(l-Vf)/(Ef*Vf)+invrwh(i);

d_sigma_m(i)=-num(i)/den(i)

;

%%%%%%%%%% Find Matrix Stress %%%%%%%%%%

sigma_m(i)=sigma_m(i-l)+d_sigma_m(i);

%%%%%%%%%% Find Matrix Plastic, Elastic & Thermal Strains %%%%%%%%%%

if ( sigma_m(i-l) < )

if ( d_sigma_m(i) < )

plastic_str(i)=-d_sigma_m(i)*invrwh(i);

else

plastic_str(i)=d_sigma_m(i)*invrwh(i);

end

else

end

plastic_str(i)=d_sigma_m(i)*invrvvh(i);

elastic_str(i)=d_sigma_m(i)*(l/Em(i));

thermal_str(i)=alpha_m*tempStep;
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%%%%%%%%%% Find Total Matrix Strain %%%%%%%%%%

d_strain(i)=elastic_str(i)+plastic_str(i)+creep_strain(i)+thermal_str(i);

tota!_str(i)=total_str(i- 1 )+d_strain(i);

total_elastic_str(i)=total_elastic_str(i- 1 )+elastic_str(i);

total_plastic_str(i)=total_plastic_str(i- 1 )+plastic_str(i);

total_creep_str(i)=total_creep_str(i- 1 )+creep_strain(i);

total_thermaJ_str(i)=total_thermal_str(i- 1 )+thermal_str(i);

total_difF_crp_str(i)=total_diff_crp_str(i-l)+difF_crp_str(i);

total_disl_crp_str(i)=total_disl_crp_str(i- 1 )+disl_crp_str(i);

end

%%%%%%%%% PRINT TO A FILE AND PLOT OUTPUTS %%%%%%%%%%%%%%%%

if tempinit == temp_final

%i=4:M+4; % Start counter from 2 to include instantaneous strain in total_str vs time plot

i=linspace(4,M+4,PD);

figure

plot(time(i),total_str(i),'o')

title('Total Strain Vs Time')

xlabel(TIME [seconds]')

ylabel(TOTAL STRAIN')

figure

plot(time(i),sigma_y(i),'o',time(i),sigma_m(i),'*')

xlabel('TIME [seconds]')

ylabelCMATRLX STRESS [Pa]')

title('Matrix Stress = *, Yield Strength = o')

figure

plot(time(i),total_elastic_str(i),'+',time(i),total_creep_str(i),'d')

xlabel(TIME [seconds]')

ylabel(*CUMUL. MATRIX STRAIN COMPONENTS')
title('elastic=+, creep=diamond')

%title('elastic=+, plastic=o, thermal=*, creep=diamond')

figure

plot(time(i),diff_crp_str(i)/+',time(i),disl_crp_str(i),'o')

xlabel(TIME [seconds]')

ylabelCESfCREMENTAL CREEP STRAINS')

title(T)iffusional Creep Strain = +, Dislocation Creep Strain = o')

figure

plot(time(i),disl_crp_str(i)/o
,

,time(i),LT_PL_crp_str(i),
,

+',time(i),HT_PL_crp_str(i),
,

*',time(i),PLB_crp_s

tr(i),'d')

xlabeK'TIME [seconds]')

ylabel(TND. DISLOCATION CREEP STRAINS')

title('Total Disl Crp=o, LT Power Law=+, HT Power Law=*, PL Breakdown=diamond')
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figure

plot(time(i)4ifi'_c^p_st^(i),
,

o
,

,time(i),NH_crp_st^(i),'+
,

,time(i),Coble_crp_str(i),
,* ,

)

xlabel(TIME [seconds]')

ylabel('IND. DIFFUSIONAL CREEP STRAINS')

title('Total Diff Crp = o, Nabarro-Herring Creep = +, Coble Creep = *')

%%%%%% PRINT sigma_m AND total_str FOR i=M+4 IN WINDOW %%%%%%

figure

orient tall

plot(D,D),axis('ofr);

text(0.05,1.00,sprintf('ISOTHERMAL CREEP, ISO-STRAIN, UNIFIED CRP. LAW'));

text(0.05,0.95,sprintf('CREEP TEMP [K] = %6.4f,temp_init));

text(0.05,0.90,sprintf('APPLIED STRESS [Pa]= %6.4e',appl_stress));

text(0.10,0.80,sprintf('MATPJX STRESS [Pa] BEFORE APPL STRESS : %6.4e',sigma_m(2)));

text(0.10,0.75,sprintf('MATRLX STRESS [Pa] AFTER APPL STRESS : %6.4e',sigma_m(4)));

text(0.10,0.65,sprintf(TOTAL MATRIX STRAIN BEFORE APPL STRESS: %6.4e\total_str(2)));

text(0.10,0.60,sprintf('TOTAL MATRLX STRAIN AFTER APPL STRESS: %6.4e',total_str(4)));

text(0. 15,0.55,sprintf('ELASTIC STRAIN DUE TO APPLIED STRESS: %6.4e', elast_strain));

text(0. 1 5,0.50,sprintf('PLASTIC STRAIN DUE TO APPLIED STRESS: %6.4e', plast_strain));

text(0.10,0.40,sprintf('FINAL MATRIX STRESS [Pa]: %6.4e', sigma_m(M+4)));

text(0. 10,0.35,sprintf('TOTAL MATRLX STRAIN: %6.4e', total_str(M+4)));

text(0.10,0.25,sprintf('ELASTIC STRAIN ACCUM. DURING CREEP: %6.4e', total_elastic_str(M+4)));

text(0. 10,0.20,sprintf('TOTAL ISOTHERMAL CREEP STRAIN: %6.4e', total_creep_str(M+4)));

text(0. 10,0. 10,sprintf('TOTAL DISL CREEP STRAIN: %6.4e', total_disl_crp_str(M+4)));

text(0. 10,0.05,sprintf(TOTAL DIFF CREEP STRAIN: %6.4e', total_diff_crp_str(M+4)));

%%%%% DATA OUPUT FILE IS WRITTEN FOR EACH RUN
%%%%% NAME OF DATA FILE MUST DEFER FOR EACH RUN
%%%%% I.E., Heat from 300 to 700 K, name file: u3_2_7.txt

%%%%% I.E., Creep run at 673 K with 40 MPa applied load, name file: u673_40.txt, etc.

yy=[temp(i);time(i);sigma_3'(i);sigma_m(i);total_str(i);. .

.

total_thermal_str(i);total_elastic_str(i);total_plastic_str(i);total_creep_str(i);...

disl_crp_str(i);diff_crp_str(i);PLB_crp_str(i);PL_crp_str(i);...

LT_PL_crp_str(i);HT_PL_crp_str(i);Coble_crp_str(i);NH_crp_str(i)];

fp=fopen('u7_2_3 .txt',V);

rowtext=[* temp time sigma_y sigma_m tot_str tot_thstr tot_elstr totjplstr tot_crstr

disl_str diff_str PLBcrpstr PL_crpstr LT_PLstr HT_PLstr Coble_str NH_str '];

fprintf(fp, ' temp time sigma_y sigma_m tot_str tot_thstr totelstr tot_plstr tot_crstr

disl_str diff_str PLB_crpstr PL_crpstr LT_PLstr HT_PLstr Coble_str NH_str

\n',rowtext)

fprintf(fp, '%8.2f %10.2f %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e

%12.4e %12.4e %12.4e %12.4e %12.4e\n', yy)

else
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i=linspace(4,M+4,PD);

figure

plot(temp(i),total_str(i),
,

o')

title('Total Strain Vs Temperature')

xlabel('TEMPERATURE [K]')

ylabel(TOTAL STRAIN')

figure

plot(temp(i),sigma_y(i),'o',temp(i),sigma_m(i),**')

xlabel('TEMPERATURE [K]')

ylabelCMATRIX STRESS [Pa]')

title(*Matrix Stress = *, Yield Strength = o')

figure

plot(temp(i),total_elasuc_stj(i)/+',temp(i)^

al_creep_str(i),'d')

xlabeI('TEMPERATURE [K]')

ylabel('CUMUL. MATRIX STRAIN COMPONENTS')
title('elastic=+, plastic=o, thermal=*, creep=diamond')

figure

plot(temp(i),difr_crp_str(i),'+',temp(i),disl_crp_str(i),'o')

xlabeK'TEMPERATURE [K]')

ylabel('INDIVIDUAL CREEP STRAINS')

title('Diffusional Creep Strain = +, Dislocation Creep Strain = o')

figure

plot(temp(i),disl_crp_str(i),'o',temp(i),LT_PL_crp_str(i),
,

+',teinp(i),HT_PL_crp_str(i),'*',temp(i),PLB_crp

_str(i),'d')

xlabel('TEMPERATURE [K]')

ylabelCIND. DISLOCATION CREEP STRAINS')

title('Total Disl Crp=o, LT Power Law=+, HT Power Law=*, PL Breakdown=diamond')

figure

plot(temp(i)4ifr_crp_str(i);o',ternp(i),NH_crp_str(i),'+',teinp(i),Coble_crp_str(i),' + ')

xlabeK'TEMPERATURE [K]')

ylabel(TND. DIFFUSIONAL CREEP STRAINS')

title('Total Diff Crp = o, Nabarro-Herring Creep = +, Coble Creep = *')

%%%%%%%% PRINT sigma_m AND total_str FOR i=M+4 IN WINDOW

figure

orient tall

plot(D,n),axis('off);

text(0.05,1.00,sprintf('THERMAL CYCLING, ISO-STRAIN, UNIFIED CREEP'));

text(0.05,0.95,sprintf(TNITIAL TEMP = %6.4f,temp_init));

text(0.05,0.90,sprintf('FINAL TEMP = %6.4f,temp_final));

text(0.10,0.85,sprintf(TNITIAL MATRIX STRESS [Pa]: %6.4e',sigma_m_init));

text(0.10,0.80,sprintf(TNITIAL TOTAL MATRIX STRAIN: %6.4e',total_str(4)));

text(0.10,0.75,sprintf('INITIAL MATRIX ELASTIC STRAIN: %6.4e\total_elastic_str(4)));
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text(0.10,0.70,sprintf('INITIAL MATRIX PLASTIC STRAIN: %6.4e',total_plastic_str(4)));

text(0.10,0.65,sprintf('INITIAL MATRIX THERMAL STRAIN: %6.4e*,total_thermal_str(4)));

text(0.10,0.60,sprintf('INITIAL MATRIX CREEP STRAIN: %6.4e',total_creep_str(4)));

text(0.10,0.50,sprintf('FTNAL MATRIX STRESS [Pa]: %6.4e\ sigma_m(M+4)));

text(0. 10,0.45,sprintf(TOTAL MATRIX STRAIN: %6.4e\ total_str(M+4)));

text(0. 10,0.35,sprintf('TOTAL ELASTIC STRAIN: %6.4e', total_elastic_str(M+4)));

text(0. 10,0.30,sprintf(TOTAL PLASTIC STRAIN: %6.4e\ total_plastic_str(M+4)));

text(0. 10,0.25,sprintf(TOTAL THERMAL STRAIN: %6.4e', total_thermal_str(M+4)));

text(0.10,0.20,sprintf(TOTAL CREEP STRAIN: %6.4e\ total_creep_str(M+4)»;

text(0. 10,0. 15,sprintf(TOTAL DISL CREEP STRAIN: %6.4e', total_disl_crp_str(M+4)));

text(0. 10,0. 10,sprintf('TOTAL DIFF CREEP STRAIN: %6.4e', total_diff_crp_str(M+4)));

%%%%% DATA OUPUT FILE IS WRITTEN FOR EACH RUN
%%%%% NAME OF DATA FILE MUST DIFER FOR EACH RUN
%%%%% I.E., Heat from 300 to 700 K, name file: u3_2_7.txt

%%%%% I.E., Creep run at 673 K with 40 MPa applied load, name file: u673_40.txt, etc.

yy=[temp(i);time(i);sigma_y(i);sigma_m(i);total_str(i);...

total_thermal_str(i);total_elastic_str(i);total_plastic_str(i);total_creep_str(i);...

disl_crp_str(i);dirr_crp_str(i);PLB_crp_str(i);PL_crp_str(i);. .

.

LT_PL_crp_str(i);HT_PL_crp_str(i);Coble_crp_str(i);NH_crp_str(i)]

;

rp=fopen('u7_2_3 .txt',V);

rowtext=[' temp time sigma_y sigma_m tot_str tot_thstr tot_elstr tot_plstr tot_crstr

disl_str diff_str PLB_crpstr PL_crpstr LT_PLstr HT_PLstr Coble_str NH_str '];

fprintf(fp, ' temp time sigma_y sigma_m tot_str tot_thstr totelstr tot_plstr tot_crstr

disl_str diff_str PLB_crpstr PL_crpstr LT_PLstr HT_PLstr Coble_str NH_str

\n',rowtext)

fprintf(fp, '%8.2f %10.2f %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e

%12.4e %12.4e %12.4e %12.4e %12.4e\n', yy)

end
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APPENDIX C. DETERMINATION OF THE INTERFACIAL
SHEAR STRESS n

In order to determine vt , it is assumed that the matrix undergoes elastic, plastic,

and creep deformation. For the sake of mathematical expediency, it is further assumed

that the matrix creeps by diffusional and power law creep dislocation creep:

r m =— +
T ~ Tm

+a't"
z +a"t (c.i)

m

T T — T
where— is the elastic term, -2L is the plastic term, y is the shear strain, x is the

G„ K"m

interfacial shear stress, rm is the shear yield strength of the matrix, A't"
2

is the dislocation

power-law creep term, n.2 is the power-law exponent, A' and A" are the dislocation

power-law creep and diffusional (Coble and Nabarro-Herring) creep terms, respectively.

. dv
Since y m =— , Equation (C.I) can be written as:

dr

dv ( \ i
A ,y= T — +— + A

dr {Gm K" )

y*

^- + A't" (C.2)
K"

Referring to Figure 2 in Section B Chapter IV, consider the displacement along the z-

direction at an arbitrary point (r = r) in the matrix, w(r = r/) = w, and w(r = D/2) = v. The

force equilibrium at r = rf, and arbitrary point (r = r), provides,

T - T,
V (C.3)
\rj

Substitution of Equation (C.3) into Equation (C.I) becomes:
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dv r
f

dr r

( 1 1 1

KGm K" )

ys

+A
{
rlf K'

(C4)

Integrating from r = r/ to R, compared to which v = {u+w) and v respectively, Equation

(C.4) becomes:

V - (U + W) = Tj

1 1

L Gm
+
K"

A"

( >
R n n

/y In + A'r r.
i fW

\-n \-n
R -7 ys

(C.5)

Taking the first derivative of Equation (C.5) with respect to z gives:

dv .du dw . /

dz dz dz dz

1 1

G„j £" 7 W
f \
R

Vf)
+ A'nr

n - 1 dr. n

~dz~
r

f

\-n \-n
R -r

f

\-n
-0 (C.6)

dv_

dz

du dw dy,
Since — = sm ,

— = ef , and w = hy
x

=> therefore — = h-
dz dz dz

This time, taking the first derivative of Equation (18) with respect to z, results in

dy dz—- = K—'-At , Equation (C.6) becomes
dz dz

dr. dr.

e -(e f
+hA—L) =—L

m f dz dz

1 1
+ + A"

Gm K" 7 1d|

( \
R

\
rU

n -\dr „_i
+ A'nr —-r,

i dz f

R
1-/7 \-n

"7

l-n

(C.7)

and when rearranged:

dr.

(s -e,)m f dz
hA +

r \

1 1
+— + A"

G K"
v m

r In

f \

R

v
r
/J

+ nA'r
f

r
n\-n 1-/2^
R "7

1-n

n-\

(C.8)
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For simplicity, let:

A = KAt

A' = A
dlsl

At

A" = A
dlff

At

RTM = hKe
/K,

At

r \

N =
1

1— +— + A. -At
G K„ *s j

r
f
\n
'£
W

Q = nrfA&lAt
( \-n \-n\
R ' rf

\-n

A
d,ff

~
42Q

kTd .

L
d

8b

A
d>sl ={S)"

+X

AD
eff

GJb r
Y
v

kT VG„

Equation (C.9) simply becomes:

dz

.

m f dz
M + N +Or

m-1 (C9a)

If one assumes, £/is function of z, and from the second derivative of the force balance

equation (r. = -•
2 do

f

), Equation (C.9a) becomes:
r
f

dz

or:

£ -
m E

a r
f
da

f
r

f
2 j 2

dz

M + N + Ot.
n-\

d
2

a

dz'

=m -8.

(C.9b)

(C.9c)

where: Hl = M+N+Ot n-\

79



and t" is the interfacial shear stress from the previous step (iteration). Equation (C. 9c)

is a second order differential equation that has a solution of the following form:

07 = Efsm + C, cosh(/fe) + C2
sinh(/fe) (CIO)

J
HI—

, and applying the following boundary conditions for Equation (C. 10):
Ef

d<j f \z =

crf\; =i.| = and —
Ci and C2 becomes:

2) dz

rr\c\\\ H
f mE
fsm cosh\p'-^-

j
^1

~

P-

E
fem smh\P

'

c, = - 2

COShl/?^

Taking the derivative ofEquation (CIO) with respect to z, the equation becomes:

da,
f = C,^sinh(/?z) + C,/?cosh(/?z) (C. 1 1)

dz

The interfacial shear stress vt can now be determined by the substitution ofEquation

(C. 1 1) in the force balance equation which results in:

t, = -—[QPsmhtfz) + C2
j3cosh(j3z)] (C.12)

r
f

where G, C2 and /? have all been defined earlier.
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APPENDIX D. RELATIONSHIP BETWEEN THE LINEAR WORK
HARDENING COEFFICIENTS IN SHEAR, K" AND
TENSION, Kj

As determined from Figure D. 1, the stress at any point of the plot is:

^ = Ems^+K^em_s^j (D.l)

Substitution of the von Mises criterion, r = —j= and y = v3£ in Equation D. 1,

V3

= fr7+f(r-r:) (D.2)

Young's Modulus, Em is a function of the Shear Modulus,

E_
<?«=>G =

2(1 + v)

(D.3)

where vis Poisson's ratio. Substitute Equation (D.3) in Equation (D.2)

2(1 - v)Gm ys K, ( ys\ , „ ys „„/ ys\

=> T= Y m +
-J\

7
~ r >»)

aild C°mPare tQ => T = GmY m +K \y-Ym)-

Assuming mathematical license, v= 0.5, thus 2(l+v) = 3 , then

*" =^ (D.4)
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APPENDIX E. TEMPERATURE DEPENDENCE OF
THRESHOLD STRESS, r

The interfacial shear strain rate obtained from Reference 40 may be represented as:

t-*°m\,,„.\ (E.i)

kTh

where t is given by: x - 1n\ — oR (E.2)

and cjr , the radial (normal) stress is a function of temperature acting on r . The radial

stress, gr is assumed a linear function of temperature, of the form:

aR =j + C (E.3)

where A and Care arbitrary constants. Application of the two initial conditions for

Equation (E.3), (1) is at the stress free conditions at composite fabrication, and (2) is at

room temperature,

aR (T = 800K) = °R{T= 30&K) = aRo

where gr is not to exceed the matrix yield strength, the constants A and C are determined

to be:

A = 4S0a
Ro

C = -0.60a
Ro

Substitution of the constants^ and B into Equation (E.3), Equation (E.3) becomes:

4S0aR
°r =—jr^-QW°Ro

The final form ofEquation (E.2) for r is:

(E.4)- 2lf
480 n ^n

0.60
T
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